精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+lnx
x

(1)设a>0,若函数f(x)在区间(a,a+
1
2
)上存在极值,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k2-k
x+1
恒成立,求实数k的取值范围.
分析:(1)利用导数求得函数f(x)的极值点x0,令x0∈(a,a+
1
2
)
即可;
(2)不等式f(x)≥
k2-k
x+1
,即
(x+1)(1+lnx)
x
k2-k
,设g(x)=
(x+1)(1+lnx)
x
,利用导数求出g(x)在[1,+∞)上的最小值,使其大于等于k2-k即可;
解答:解:(1)因为f(x)=
1+lnx
x
,则f′(x)=-
lnx
x2
(x>0)

当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.
所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以f(x)在x=1处取得极大值.
因为f(x)在区间(a,a+
1
2
)
(其中a>0)上存在极值,
所以
a<1
a+
1
2
>1
,解得
1
2
<a<1

(2)不等式f(x)≥
k2-k
x+1
,即
(x+1)(1+lnx)
x
k2-k

g(x)=
(x+1)(1+lnx)
x
,则g′(x)=
x2-lnx
x2
. 
 令h(x)=x2-lnx,则h′(x)=1-
1
x

因为x≥1,所以h'(x)≥0,则h(x)在[1,+∞)上单调递增.
所以h(x)得最小值为h(1)=1>0,从而g'(x)>0,
故g(x)在[1,+∞)上单调递增,所以g(x)得最小值为g(1)=2,
所以k2-k≤2,解得-1≤k≤2.
点评:本题考查利用导数研究函数的极值、在闭区间上的最值,考查恒成立问题,考查转化思想,考查学生解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案