【题目】在三棱锥
中,
是正三角形,面
面
,
,
,
、
分别是
、
的中点.
![]()
(1)证明:
;
(2)求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形
中,
等边三角形,
,以
为折痕将
折起,使得平面
平面
.
![]()
(1)设
为
的中点,求证:
平面
;
(2)若
与平面
所成角的正切值为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与圆O:
相切的直线l交椭圆C于A,B两点(O为坐标原点),求△AOB面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位甲、乙、丙三个部门的员工人数分别为32,48,
现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
Ⅰ
应从甲、乙、丙三个部门的员工中分别抽取多少人?
Ⅱ
若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的数学期望和方差;
设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,要在河岸
的一侧修建一条休闲式人行道,进行图纸设计时,建立了图中所示坐标系,其中
,
在
轴上,且
,道路的前一部分为曲线段
,该曲线段为二次函数
在
时的图像,最高点为
,道路中间部分为直线段
,
,且
,道路的后一段是以
为圆心的一段圆弧
.
![]()
(1)求
的值;
(2)求
的大小;
(3)若要在扇形区域
内建一个“矩形草坪”
,
在圆弧
上运动,
、
在
上,记
,则当
为何值时,“矩形草坪”面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,已知
都是边长为
的等边三角形,
为
中点,且
平面
,
为线段
上一动点,记
.
![]()
(1)当
时,求异面直线
与
所成角的余弦值;
(2)当
与平面
所成角的正弦值为
时,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com