精英家教网 > 高中数学 > 题目详情
已知f(1-x)=1+x,则f(x)的表达式为(  )
分析:令1-x=t,则x=1-t,则①式可变为f(t)=2-t,然后用x代换t,即可得f(x)的解析式.
解答:解:∵函数f(1-x)=1+x   ①
令1-x=t,则x=1-t,则①式可变为f(t)=2-t
即f(x)=2-x.
故选A.
点评:本题主要考查了函数解析式的求法及其常用方法,同时考查了换元法的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)已知函数f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定义域内是连续函数,数列{an}通项公式为an=
1
an
,则数列{an}的所有项之和为1.
(2)过点P(3,3)与曲线(x-2)2-
(y-1)2
4
=1有唯一公共点的直线有且只有两条.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函数f(x)=
a
b
在区间[-1,1]上是增函数,则实数t的取值范围是(5,+∞);
(4)我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”有26个.
其中正确的命题有
(1)(2)(4)
(1)(2)(4)
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)证明f(x)在(0,+∞)上为增函数;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
 (x<-1)
x+2(x≥-1)
g(x)=
x-2(x≤1)
-1
 (x>1)
,h(x)=f(x)•g(x)
(1)求函数h(x)的解析式,并求它的单调递增区间;
(2)若h(x)=t有四个不相等的实数根,求t的取值范围.

查看答案和解析>>

同步练习册答案