精英家教网 > 高中数学 > 题目详情
15.在程序框图中,已知:${f_0}(x)=x{e^x}$,则输出的是2012ex+xex

分析 模拟程序的运行,利用导数的运算性质,依次写出每次循环得到的i,fi(x)的值,当i=2012时退出循环,即可得解.

解答 解:模拟执行程序可得:
${f_0}(x)=x{e^x}$,
i=0,执行循环体,i=1,f1(x)=(exx)′=ex+xex
不满足条件i=2012,执行循环体,i=2,f2(x)=f${\;}_{1}^{′}$(x)=2ex+xex

不满足条件i=2012,执行循环体,i=2012,f2012(x)=2012ex+xex
满足条件i=2012,退出循环,输出的是:2012ex+xex
故答案为:2012ex+xex

点评 本题主要考查了循环结构的程序框图的应用,当循环的次数有限或有规律时,常采用模拟程序运行的方法来解答,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列比较大小错误的是(  )
A.sin($-\frac{π}{18}$)>sin($-\frac{π}{10}$)B.sin250°>sin260°C.tan$\frac{π}{4}$>tan$\frac{π}{6}$D.tan138°>tan143°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于定义在区间D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0),则称函数f(x)在区间D上有“下界”,把f(x0)称为函数f(x)在D上的“下界”.
(1)分别判断下列函数是否有“下界”?如果有,写出“下界”,否则请说明理由;f1(x)=1-2x(x>0),f2(x)=x+$\frac{16}{x}$(0<x≤5).
(2)请你类比函数有“下界”的定义,写出函数f(x)在区间D上有“上界”的定义;并判断函数f2(x)=|x-$\frac{16}{x}$|(0<x≤5)是否有“上界”?说明理由;
(3)若函数f(x)在区间D上既有“上界”又有“下界”,则称函数f(x)是区间D上的“有界函数”,把“上界”减去“下界”的差称为函数f(x)在D上的“幅度M”.
对于实数a,试探究函数F(x)=x|x-2a|+3(a≤$\frac{1}{2}$)是否是[1,2]上的“有界函数”?如果是,求出“幅度M”的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x∈R且x≠1,比较两式1+x与$\frac{1}{1-x}$的值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.实数m分别取什么数值时?复数z=(m2+5m+6)+(m2-2m-15)i满足:
(1)纯虚数;
(2)与复数12+16i互为共轭.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.国际上通常用恩格尔系数衡量一个国家和地区人民生活水平的状况,它的计算公式为$n=\frac{x}{y}$(x代表人均食品支出总额,y代表人均个人消费支出总额)且y=2x+475,各种类型的家庭标准如表:
家庭类型贫困温饱小康富裕
nn≥59%50%≤n≤59%40%≤n≤50%30%≤n≤40%
张先生居住区2007年比2002年食品支出下降7.5%,张先生家在2007年购买食品和2002年完全相同的情况下人均少支出75元.则张先生家2007年属于(  )
A.贫困B.温饱C.小康D.富裕

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形的形状为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点M的极坐标(1,π)化成直角坐标为(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2x+x-2的零点所在的区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

同步练习册答案