精英家教网 > 高中数学 > 题目详情
设三棱锥s-ABC的顶点P在底面的射影S′(在△ABC内部)到三个侧面的距离相等,则S′是△ABC的(  )
A.外心B.垂心C.内心D.重心
如图,S'在三个侧面上的射影分别为E,F,G;连接SE,SF,SG,延长线交底面于,P,Q,R,
∵S'到三个侧面距离相等
∴S'E=S'F=S'G
∴SE=SF=SG
S'P=S'Q=S'R EQ=FP=GR (先证出相等)
∵AB⊥S'S AB⊥S'F
∴AB⊥△SPS'
∴AB⊥S'P
同理证得BC⊥S'Q AC⊥S'R (又证出垂直)
所以S’是底面三角形的内心
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,AB=2.则点A到面A1DCB1的距离是(  )
A.
3
B.
2
C.
2
2
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从点M(0,2,1)出发的光线,经过平面xoy反射到达点N(2,0,2),则光线所行走的路程为(  )
A.3B.4C.3
2
D.
17

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平行六面体ABCD=A1B1C1D1中,AB=1,AD=2,AA1=3.∠BAD=90°,∠BAA1=∠DAA1=60°
求AC1的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥S-ABCD中,ABCD,CD⊥面SAD.且
1
2
CD=SA=AD=SD=AB=1

(1)当H为SD中点时,求证:AH平面SBC;平面SBC⊥平面SCD.
(2)求点D到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=4,E、F、G分别是PC、PD、BC的中点.
(1)求证:PA平面EFG
(2)求三棱锥P-EFG的体积
(3)求点P到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1,D1是A1B1上一动点(可以与A1或B1重合),过D1和C1C的平面与AB交于D.
(Ⅰ)证明BC平面AB1C1
(Ⅱ)若D1为A1B1的中点,求三棱锥B1-C1AD1的体积VB1-C1AD1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,E是AA1的中点.
(1)求CAl与底面ABCD所成角的正切值;
(2)证明A1C平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体A1B1C1D1-ABCD各棱所在的直线中,与直线AB异面的有(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案