精英家教网 > 高中数学 > 题目详情
16.已知函数y=asinx+b的图象过点A(0,0),B($\frac{3π}{2}$,-1),试求函数在原点处的切线方程.

分析 分别代入A,B,解方程可得a=1,b=0,再求y=sinx的导数,求得切线的斜率,再由点斜式方程即可得到切线方程.

解答 解:由题意可得,
asin0+b=0,asin$\frac{3π}{2}$+b=-1,
即有b=0,-a+b=-1,
则a=1,b=0,
即y=sinx.
y′=cosx,
函数在原点处的切线斜率为k=cos0=1,
则函数在原点处的切线方程为y=x.

点评 本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,同时考查待定系数法求函数的解析式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.将3本互不相同的数学书与4本互不相同的英语书放在书架同一层排成一排,则仅有2本数学书相邻且这2本数学书不放两端的放法的种数为1728.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,$\overrightarrow{OA}$=(cosx,sinx),$\overrightarrow{OB}$=(-$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
(1)若∠AOB=$\frac{5}{6}$π,求向量$\overrightarrow{AB}$的模;
(2)将函数f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$的图象向左平移$\frac{π}{3}$个单位得到函数g(x)的图象,试求函数F(x)=f(x)+g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:[$\frac{2}{3a}$-$\frac{2}{a+b}$($\frac{a+b}{3a}$-a-b)]÷$\frac{a-b}{a}$•$\frac{a}{a-b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α,β∈(π,$\frac{3}{2}$π),且tan2α>tan2β,则(  )
A.α<βB.α>βC.α+β>3πD.α+β<2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求lg($\sqrt{3}$sinx)=lg(-cosx)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两点A(-2,0)和B(0,2),点C是圆x2+y2+4x-6y+12=0上的任意一点,则△ABC的面积的最小值是(  )
A.3-$\sqrt{2}$B.$\frac{3-\sqrt{2}}{2}$C.$\frac{3+\sqrt{2}}{2}$D.$\frac{6-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知P为函数f(x)=sinωx的一个对称中心,若P到图象对称轴的距离的最小值为$\frac{π}{4}$,则f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-|x-a|.
(1)若f(x)在(0,+∞)上存在最小值,求实数a的取值范围;
(2)若方程f(x)=|x|有两个实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案