精英家教网 > 高中数学 > 题目详情
cos2θ=
1
3
,则sin4θ+cos4θ的值为(  )
A、
13
18
B、
11
18
C、
5
9
D、1
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:已知等式利用二倍角的余弦函数公式化简,求出cos2θ与sin2θ的值,代入原式计算即可得到结果.
解答:解:∵cos2θ=2cos2θ-1=1-2sin2θ=
1
3

∴cos2θ=
2
3
,sin2θ=
1
3

则原式=
4
9
+
1
9
=
5
9

故选:C.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某产品连续4个月的广告费用xi(千元)与销售额yi(万元),经过对这些数据的处理,得到如下数据信息:
4
i=1
xi=18,
4
i=1
yi=14;
②广告费用x和销售额y之间具有较强的线性相关关系;
③回归直线方程
y
=
b
x+
a
中的
b
=0.8(用最小二乘法求得).
那么,当广告费用为6千元时,可预测销售额约为(  )
A、3.5万元
B、4.7万元
C、4.9万元
D、6.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的定义域为A,若存在常数M,满足:(1)对任意x∈A,使得f(x)≤M;(2)对任何实数N<M,总存在x0∈A,使得f(x0)>N,则称M为函数y=f(x)的上确界.则函数f(x)=
2-xx≥0
log
1
2
(
1
2
-x)
x<0
的上确界为(  )
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x2+x≥0},则集合∁UA=(  )
A、[-1,0]
B、(-1,0)
C、(-∞,-1]∪[0,+∞)
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
x+1的倾斜角是(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-2)ln(x2-4x+4)-(x-2)ln4的零点个数为(  )
A、2B、1C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式中正确的是(  )
A、tan
4
7
π>tan
3
7
π
B、tan(-
13
4
π)<tan(-
17
5
π)
C、tan4>tan3
D、tan281°>tan665°

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中是幂函数的是(  )
A、y=2x
B、y=2x
C、y=x2
D、y=
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

在钝角△ABC中,已知AB=
3
,AC=1,∠B=30°,则△ABC的面积是(  )
A、
3
2
B、
3
4
C、
3
2
D、
3
4

查看答案和解析>>

同步练习册答案