精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,已知圆,圆
(1)若过点C1(-1,0)的直线l被圆C2截得的弦长为,求直线l的方程;
(2)设动圆C同时平分圆C1的周长、圆C2的周长.
①证明:动圆圆心C在一条定直线上运动;
②动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

【答案】分析:(1)设过直线l方程:y=k(x+1),根据垂直于弦的直径的性质,结合点到直线的距离公式列式,可解出k的值,从而得到直线l的方程;
(2)①由题意,圆心C到C1、C2两点的距离相等,由此结合两点间的距离公式建立关系式,化简整理得x+y-3=0,即为所求定直线方程;
②根据题意设C(m,3-m),得到圆C方程关于参数m的一般方程形式,由此可得动圆C经过圆x2+y2-6y-2=0与直线x-y+1=0的交点,最后联解方程组,即可得到动圆C经过的定点坐标.
解答:解:(1)设过点C1(-1,0)的直线l方程:y=k(x+1),化成一般式kx-y+k=0
∵直线l被圆C2截得的弦长为
∴点C2(3,4)到直线l的距离为d==
解之得k=
由此可得直线l的方程为:4x-3y+4=0或3x-4y+3=0.
(2)①设圆心C(x,y),由题意,得CC1=CC2
=
化简整理,得x+y-3=0,
即动圆圆心C在定直线x+y-3=0上运动.
②设圆C过定点,设C(m,3-m),
则动圆C的半径为=
于是动圆C的方程为(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2
整理,得x2+y2-6y-2-2m(x-y+1)=0,

所以动圆C经过定点,其坐标为
点评:本题求被定圆截得定长的弦所在直线方程,并探索动圆圆心在定直线上的问题.考查了直线与圆的方程、直线与圆和圆与圆的位置关系,考查学生运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案