精英家教网 > 高中数学 > 题目详情
函数f(x)=
-(x-
1
2
)2+
1
12
,-
1
2
-
3
6
≤x≤
1
2
x3
x+1
,                        
1
2
<x≤2
和函数g(x)=asin
π
6
x-a+1 (a>0),若存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,则实数a的取值范围是
 
考点:分段函数的应用
专题:函数的性质及应用
分析:根据给出的函数f(x)的解析式求出其值域,然后求出函数g(x)在x∈[0,1]上的值域,由存在x1、x2∈[0,1],使得f(x1)=g(x2)成立,说明函数g(x)的最值中至少一个在范围内,最后列式求解a的范围.
解答: 解:当
1
2
<x≤1,f(x)=
x3
x+1
,f′(x)=
3x2(x+1)-x3
(x+1)2
=
2x3+3x2
(x+1)2
>0,
所以函数f(x)在
1
2
<x≤1上为增函数,所以f(x)∈(
1
12
1
2
],
当x∈[0,
1
2
]时,函数f(x)=-(x-
1
2
2+
1
12
为增函数,f(x)∈[-
1
6
1
12
],
所以在[0,1]上f(x)∈[-
1
6
1
2
],
函数g(x)=asin
π
6
x-a+1 (a>0),
当x∈[0,1]时,sin
π
6
x
∈[0,
1
2
],
所以g(x)∈[1-a,1-
a
2
],
若存在x1、x2∈[0,1],使得f(x1)=g(x2)成立,说明函数函数g(x)的最大值与最小值中至少一个在[-
1
6
1
2
]内,
所以-
1
6
≤1-a≤
1
2
,-
1
6
≤1-
a
2
1
2

1
2
≤a≤
7
6
或1≤a≤
7
3

1
2
≤a≤
7
3

所以实数a的取值范围是
1
2
≤a≤
7
3

故答案为:[
1
2
7
3
]
点评:本题主要考查函数的零点及函数的零点存在性定理,考查了数学转化思想,本题把函数的零点的研究转化为元素与集合之间的关系问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如图的2×2列联表.
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计305050
则至少有(  )的把握认为喜爱打篮球与性别有关.附参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A、95%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:

莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞,某学校文学社从男女生中各抽取100名学生调查对莫言作品的了解程度,对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.调查结果如下表:
男生女生合计
非常了解80m140
一般了解n4060
合计100100200
参考数据:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.500.400.252.150.100.020.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)求m,n的值;
(2)在犯错误的概率下不超过多少的前提下认为“对莫言作品非常了解与性别有关”?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,侧面PAD为等边三角形,AB∥CD,AB=2CD,BC⊥CD,∠DBC=30°,点E,F分别为AD,PB中点.
(Ⅰ)求证:CF∥平面PAD;
(Ⅱ)求证:平面PAD⊥平面PEB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC---A1B1C1中,D、E分别是AB、BB1的中点,
(1)证明:BC1∥平面A1CD
(2)若AA1=AB=BC=CA=2,侧棱AA1⊥底面ABC,求三棱锥A1-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c且cosC=
3
4

(1)若B=2C,求
b
c
的值.
(2)若c=
3
,ab=2,求|a-b|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2cosθ+2sinθ,直线l的参数方程是
x=-
3
5
t+4
y=
4
5
t
(t为参数).
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与x轴的交点是M,点N是曲线C上的一个动点,求MN的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图两个等边△ABC,△ACD所在的平面互相垂直,EB⊥平面ABC,且AC=2,BE=
3

(Ⅰ)求三棱锥A-BCE的体积;
(Ⅱ)求证:DE∥平面ABC.

查看答案和解析>>

同步练习册答案