精英家教网 > 高中数学 > 题目详情
14.已知$\frac{cosα}{1+sinα}=\sqrt{3}$,则$\frac{cosα}{sinα-1}$的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

分析 利用同角三角函数基本关系式,化简求解即可.

解答 解:$\frac{cosα}{1+sinα}=\sqrt{3}$,
又$\frac{cosα}{1+sinα}=\frac{1-sinα}{cosα}$
则$\frac{cosα}{sinα-1}$=$-\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题考查三角函数化简求值,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,已知PA是圆O的一条的切线,PB是圆经过圆心O的割线,N为PB与圆O的另一交点.
(1)过点A作PB的垂线AC,交PB于点M,交圆O于点C,连接BC,过点M作AB的平行线分别交BC于D,交PA于E,求证:DM=DB;
(2)若圆O的半径为3,NM=$\frac{1}{2}$MB,求PN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>b,c∈R,则下列不等式一定成立的(  )
A.a|c|≥bcB.|a|c≥bcC.a|c|≥b|c|D.|a|c≥b|c|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A∪$\overline{B}$发生的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是递增的等差数列,Sn为{an}的前n项和,且S5=5,a3,a4,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求|a1|+|a2|+…+|a100|的值;
(Ⅲ)若集合$\{n|{(-1)^n}\frac{a_n}{2^n}>λ,n∈{N^*}\}$中有且仅有2个元素,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥M-ABCD中,底面ABCD为矩形,MD⊥平面ABCD,且MD=DA=1,E为MA中点.
(1)求证:DE⊥MB;
(2)若DC=2,求三棱锥M-EBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=ln({1+mx})+\frac{x^2}{2}-mx$,其中m>0.
(Ⅰ)当m=1时,求证:-1<x≤0时,$f(x)≤\frac{x^3}{3}$;
(Ⅱ)试讨论函数y=f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{3sinA}{3cosA-2}$=-tanB,点E,F分别是AC,AB的中点,则$\frac{BE}{CF}$的取值范围是(  )
A.($\frac{1}{2}$,1)B.($\frac{1}{4}$,$\frac{7}{8}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{7}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知M为三角形ABC的边BC的中点,过线段AM的中点G的直线分别交线段AB,AC于点P,Q.若$\overrightarrow{AB}$=x$\overrightarrow{AP}$,$\overrightarrow{AC}$=y$\overrightarrow{AQ}$,则x+y的值是4.

查看答案和解析>>

同步练习册答案