精英家教网 > 高中数学 > 题目详情

【题目】某乳业公司生产甲、乙两种产品,需要ABC三种苜蓿草饲料,生产1个单位甲种产品和生产1个单位乙种产品所需三种苜蓿草饲料的吨数如下表所示:

产品

苜蓿草饲料

A

B

C

4

8

3

5

5

10

现有A种饲料200吨,B种饲料360吨,C种饲料300吨,在此基础上生产甲乙两种产品,已知生产1个单位甲产品,产生的利润为2万元;生产1个单位乙产品,产生的利润为3万元,分别用xy表示生产甲、乙两种产品的数量.

1)用xy列出满足生产条件的数学关系式,并画出相应的平面区域;

2)问分别生产甲乙两种产品多少时,能够产出最大的利润?并求出此最大利润.

【答案】1;图见解析;(2)当甲产品生产吨,乙产品生产吨时,利润最大,最大利润为万元

【解析】

1)根据三种饲料的数量和生产每吨甲乙产品的消耗量可构造不等式,由此可得满足条件的不等式组即为所求数学关系式;由线性规划知识可画出对应的平面区域;

2)设利润,将问题转化为轴截距最大问题的求解,通过直线平移可确定最大值点,代入可求得结果.

1种饲料有吨,则种饲料有吨,则

种饲料有吨,则,又

满足生产条件的数学关系式为

所对应的平面区域如下图阴影部分所示:

2)设利润为,则

取最大值时,轴截距最大

平移可知,当过点时,在轴截距最大

得:

当甲产品生产吨,乙产品生产吨时,利润最大,最大利润为万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.

1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式

2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的侧面展开图是一个半圆.

1)求圆锥的母线与底面所成的角;

2)过底面中心且平行于母线的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为的抛物线,求圆锥的全面积;

3)过底面点作垂直且于母线的截面,若截面与圆锥侧面的交线是长轴为的椭圆,求椭圆的面积(椭圆号的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为(   )

A. 16 B. 6 C. 12 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C上异于AB的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

讨论的单调性;

的极值点,且曲线在两点 处的切线相互平行,这两条切线在轴上的截距分别为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O经过椭圆C=1ab0)的两个焦点以及两个顶点,且点(b)在椭圆C上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线l与圆O相切,与椭圆C交于MN两点,且|MN|=,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案