精英家教网 > 高中数学 > 题目详情

已知f(x)=ex,则f(e)+f′(e)等于


  1. A.
    ee
  2. B.
    ee+e
  3. C.
    2ee
  4. D.
    2e
C
分析:先求函数f(x)=ex的导函数f′(x),然后将e代入f(x)与f′(x)的解析式可求出所求.
解答:∵f(x)=ex
∴f(e)=ee,f′(x)=ex
∴f′(e)=ee
则f(e)+f′(e)=ee+ee=2ee
故选C.
点评:本题主要考查了导数的运算,解题的关键是函数ex的导数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ex+e-x+2|x|,又不等式f(ax)>f(x-1)在x∈[
1
2
,+∞)
恒成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围;
(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex,f(x)的导数为f'(x),则f'(-2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax(e=2.718…)
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,2)上有两个零点,求a的取值范围;
(Ⅲ) A(xl,yl),B(x2,y2)是f(x)的图象上任意两点,且x1<x2,若总存在xo∈R,使得f′(xo)=
y1-y2x1-x2
,求证:xo>xl

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)求证:ex>x+1(x≠0).

查看答案和解析>>

同步练习册答案