精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x2+2ax,(x≤1)
(2a-1)x-3a+6,  (x>1)
,若f(x)在(-∞,+∞)
上是增函数,则实数a的取值范围是(  )
分析:由题意可得,函数在(-∞,1)上是增函数,在(1,+∞)上也是增函数,且有-12+2a×1≤(2a-1)×1-3a+6,从而可得一不等式组,解出即可.
解答:解:因为函数f(x)在(-∞,+∞)上是增函数,
所以f(x)在(-∞,1),(1,+∞)上均单调递增,且-12+2a×1≤(2a-1)×1-3a+6,
故有
a≥1
2a-1>0
-12+2a×1≤(2a-1)×1-3a+6
,解得1≤a≤2.
所以实数a的取值范围是[1,2].
故选D
点评:本题考查函数的单调性的性质,考查学生分析问题解决问题的能力,注意体会数形结合思想在分析问题中的作用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案