精英家教网 > 高中数学 > 题目详情
已知向量
m
=(sinA,sinB)
,且B、C分别为△ABC的三边a、b、c所对的角.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差数列,且
CA
CB
=18
,求c边的长.
分析:(1)利用向量的数量积公式,结合和角的正弦公式,可求角C的大小;
(2)利用等差数列及正弦定理,可得2c=a+b,结合向量的数量积公式与余弦定理,可求c边的长.
解答:解:(1)
m
n
=sinA•cosB+sinB•cosA=sin(A+B)
…(2分)
对于△ABC,A+B=π-C,0<C<π,∴sin(A+B)=sinC,∴
m
n
=sinC
.…(3分)
又∵
m
n
=sin2C
,∴sin2C=sinC,cosC=
1
2
,∴C=
π
3
.…(6分)
(2)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,
由正弦定理得2c=a+b.…(8分)
CA
CB
=18
,∴abcosC=18,∴ab=36.…(10分)
由余弦定理c2=a2+b2-2abcosC=(a+b)2-3ab,可得c2=4c2-3×36,
∴c2=36,解得c=6.…(12分)
点评:本题考查向量的数量积公式,考查正弦、余弦定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,若
m
n
,则sin2θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx)(ω>0)
,设函数f(x)=
m
n
且f(x)的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移
1
2
个单位,得到函数y=g(x)的图象,求函数y=g(x)在区间上[0,
4
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,当θ∈[0,π]时,函数f(θ)=
m
n
的值域是
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)已知向量
m
=(sin(2x+
π
6
),sinx)
n
=(1,sinx),f(x)=
m
n

(1)求函数y=f(x)的最小正周期及单调递减区间;
(2)记△ABC的内角A,B,C的对边分别为a,b,c.若f(
B
2
)=
2
+1
2
,b=
5
,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量
m
=(sin 
A
2
,cos 
A
2
)
n
=(cos 
A
2
,-cos 
A
2
)
,且2
m
n
+|
m
|=
2
2
AB
AC
=1

(1)求角A的大小
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案