精英家教网 > 高中数学 > 题目详情

(本小题满分12分)化简:

解析试题分析:原式=-----------------3分
=----------------1分=------------------3分
=--------------3分
=-------------------------------2分
考点:同角间三角函数公式及两角和差诱导公式
点评:要求学生熟记掌握各类三角公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角的对边,且满足
(Ⅰ)求角的大小;
(Ⅱ)当为锐角时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求的值.
(2)若,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数的图象上相邻的最高点与最低点的坐标分别为M(,求此函数的解析式及单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)若向量其中,记函数,若函数的图像与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。
(1)求的表达式及的值;
(2)将函数的图像向左平移,得到的图像,当时,的交点横坐标成等比数列,求钝角的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)求的振幅和最小正周期;
(2)求当时,函数的值域;
(3)当时,求的单调递减区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知角的终边在直线上,求角的正弦、余弦和正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知,是否存在常数,使得的值域为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知平面直角坐标系中,
(Ⅰ)求的最小正周期和对称中心;
(Ⅱ)求在区间上的单调递增区间.

查看答案和解析>>

同步练习册答案