精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲
设函数f(x)=|x-1|+|2x-3|-a.
(I)当a=2时,求不等式f(x)≥0的解集;
(II )若f(x)≥O恒成立,求a的取值范围.
分析:(I)当a=2时,由不等式可得 ①
x<1
1-x+3-2x≥2
,或②
1≤x<
3
2
x-1+3-2x≥2
,或 ③
x≥
3
2
x-1+2x-3≥2
.分别求得①、②、③的解集,再取并集,即得所求.
(II )由题意可得,f(x)的最小值大于或等于零,根据函数的解析式可得函数的最小值为 f(
3
2
)=
1
2
-a,从而求得a的取值范围.
解答:解:(I)当a=2时,求不等式f(x)≥0 即|x-1|+|2x-3|≥2,
∴①
x<1
1-x+3-2x≥2
,或②
1≤x<
3
2
x-1+3-2x≥2
,或 ③
x≥
3
2
x-1+2x-3≥2

解①得 x≤
2
3
,解②得x∈∅,解③得x≥3,
故不等式的解集为{x|x≤
2
3
,或x≥3}.
(II )若f(x)≥O恒成立,则f(x)的最小值大于或等于零.
由于函数 f(x)=
4-3x-a , x<-1
2-x-a , 1≤x<
3
2
3x-4-a , x≥
3
2
,显然函数在(-∞,
3
2
]上是减函数,
故函数的最小值为 f(
3
2
)=
1
2
-a≥0,解得 a≤
1
2

故a的取值范围为(-∞,
1
2
].
点评:本题主要考查绝对值不等式的解法,函数的恒成立问题,体现了等价转化和分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案