精英家教网 > 高中数学 > 题目详情
关于的方程,给出下列四个命题:
①存在实数,使得方程恰有2个不同实根; ②存在实数,使得方程恰有4个不同实根;
③存在实数,使得方程恰有5个不同实根; ④存在实数,使得方程恰有8个不同实根;
其中假命题的个数是(  )
A.0B.1 C.2D.3
A

试题分析:关于x的方程可化为(1)
(-1<x<1)(2)
①当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根;
②当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根;
③当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根;
④当k=时,方程(1)的解为±,±,方程(2)的解为±,±
即原方程恰有8个不同的实根.
∴四个命题都是真命题.故选A。
点评:中档题,通过讨论x的范围,将方程中的绝对值符号去掉,这是一般思路。而k实施分类讨论又是基于函数值域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)某企业拟投资两个项目,预计投资项目万元可获得利润
万元;投资项目万元可获得利润万元.若该企业用40
万元来投资这两个项目,则分别投资多少万元能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义函数,若存在常数C,对任意的,存在唯一的,使得,则称函数在D上的几何平均数为C.已知,则函数上的几何平均数为(     )
A.        B.       C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,函数的图象是折线段,其中的坐标分别为,则          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在给定的映射的条件下,象3的原象是(   )
A.8B.2或-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出以下结论:①是奇函数;②既不是奇函数也不是偶函数;③ 是偶函数 ;④是奇函数.其中正确的有(    )个
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,满足的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于定义域为的函数和常数,若对任意正实数使得恒成立,则称函数为“敛函数”.现给出如下函数:
;             ②
;               ④.
其中为“敛1函数”的有
A.①②B.③④C.②③④D.①②③

查看答案和解析>>

同步练习册答案