【题目】在等腰梯形
中,
,
,
,点
为
的中点.现将
沿线段
翻折,得四棱锥
,且二面角
为直二面角.
![]()
(1)求证:
;
(2)求二面角
的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)连接
,取
中点
,连接
,
,通过等边三角形的性质得到
,
,根据线面垂直判定定理得到
平面
,故而可得结论;(2)由面面垂直性质定理可得
平面
,求出平面
的法向量为
,同时
是平面
的一个法向量,求出法向量夹角的余弦值,进而可得结果.
(1)如图连接
,易知
,
均为正三角形,取
中点
,
连接
,
,则
,
.
又
,
平面
,
平面
,
又
平面
,所以
.
(2)因为二面角
为直二面角,所以平面
平面
,
又因为平面
平面
,且
,所以
平面
.
又因为
,故以点
为坐标原点,
,
,
所在直线分别为
轴、
轴、
轴建立如图所示的空间直角坐标系
.
![]()
则
,
,
.
所以
,
.
设平面
的法向量为
.由
得![]()
取
,所以
.
又因为直线
平面
,所以
是平面
的一个法向量,
所以
.
又因为二面角
为锐二面角,
所以二面角
的余弦值
.
科目:高中数学 来源: 题型:
【题目】一个口袋中装有9个大小形状完全相同的球,球的编号分别为1,2,…,9,随机摸出两个球,则两个球的编号之和大于9的概率是______(结果用分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司对4月份员工的奖金情况统计如下:
奖金(单位:元) | 8000 | 5000 | 4000 | 2000 | 1000 | 800 | 700 | 600 | 500 |
员工(单位:人) | 1 | 2 | 4 | 6 | 12 | 8 | 20 | 5 | 2 |
根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.
![]()
(1)根据频率分布直方图及题设数据完成下列2×2列联表.
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 20 | ||
艺术生 | 30 | ||
合计50 |
(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
均为各项都不相等的数列,
为
的前n项和,
.
若
,求
的值;
若
是公比为
的等比数列,求证:数列
为等比数列;
若
的各项都不为零,
是公差为d的等差数列,求证:
,
,
,
,
成等差数列的充要条件是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.
![]()
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以
(单位:件)表示日销量,
,则每位员工每日奖励100元;
,则每位员工每日奖励150元;
,则每位员工每日奖励200元.现已知该网站6月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:
(1)对于一组数据
,
,
,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
(2)若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com