精英家教网 > 高中数学 > 题目详情
18.关于函数f(x)=(2x-$\frac{1}{{2}^{x}}$)•x3和实数m、n的下列结论中正确的是(  )
A.若-3≤m<n,则f(m)<f(n)B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2D.若f(m)<f(n),则m3<n3

分析 观察本题中的函数,可得出它是一个偶函数,由于所给的四个选项都是比较大小的,或者是由函数值的大小比较自变量的大小关系的,可先研究函数在(0,+∞)上的单调性,再由偶函数的性质得出在R上的单调性,由函数的单调性判断出正确选项.

解答 解:∵函数f(x)=(2x-$\frac{1}{{2}^{x}}$)•x3,∴f(-x)=(2-x-$\frac{1}{{2}^{-x}}$)•(-x)3=(2x-$\frac{1}{{2}^{x}}$)•x3 =f(x),
∴函数是一个偶函数.
又x>0时,f(x)=(2x-$\frac{1}{{2}^{x}}$)•x3 是增函数,且f(x)>0,故f(x)在(0,+∞)上是增函数,在(-∞,0)上是减函数.
由偶函数的性质知,此类函数的规律是:自变量离原点越近,函数值越小,即自变量的绝对值小,函数值就小,反之也成立.
考查四个选项,A选项无法判断m,n离原点的远近,故A不能判定是否正确;
B选项m的绝对值大,其函数值也大,故不对;
C选项是正确的,由f(m)<f(n),一定可得出|m|<|n|,即m2<n2
D选项,由f(m)<f(n),可得出|m|<|n|,但不能得出m3<n3,故D不成立,
故选:C.

点评 本题是一个指数函数单调性的应用题,利用其单调性比较大小,解答本题的关键是观察出函数是一个偶函数,且能判断出函数在定义域上的单调性,最关键的是能由函数图象的对称性,单调性转化出自变量的绝对值小,函数值就小,反之也成立这个结论.本题考查了判断推理能力,归纳总结能力,是函数单调性与奇偶性综合中综合性较强的题,解题中能及时归纳总结可以顺利求解此类题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.正四棱锥的底面面积为4,高为3,设它的侧棱与底面所成的角为α,则sinα=$\frac{3\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点M为椭圆上一动点,△F1MF2面积的最大值为$\sqrt{3}$.
(1)求椭圆的方程;
(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长交直线x=4分别于P、Q两点,问$\overrightarrow{P{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x3+sinx=m,y3+siny=-m,且x,y∈(-$\frac{π}{4},\frac{π}{4}$),m∈R,则tan(x+y+$\frac{π}{3}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在一次对由42名学生参加的课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)
篮球排球总计
男同学16622
女同学81220
总计241842
(1)据此判断能否在犯错误的概率不超过0.05的前提下认为参加“篮球小组”或“排球小组”与性别有关?
(2)在统计结果中,按性别用分层抽样的方法抽取7名同学进行座谈,甲、乙两名女同学中被抽中的人数为X,求X的分布列及数学期望E(X).
下面是临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:k2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定理:若x∈(0,$\frac{π}{2}$),则sinx<x,设a,b,c∈(0,$\frac{π}{2}$),其中,a是函数y=x与y=cosx图象交点横坐标,b=sin(cosb),c=cos(sinc),则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知集合A={x|x2+(2+a)x+1=0}.
(1)设集合B={x|x2-x-2=0},若A∩B=A,求实数a的取值范围.
(2)设集合c={x|x>0},试问是否存在实数a,使得A∩C=∅?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{4-|x|}$+$\sqrt{\frac{x-3}{{x}^{2}-5x+6}}$的定义域为(  )
A.{x|2<x<3}B.{x|2<x≤4}C.{x|2<x≤4且x≠3}D.{x|-1<x≤6且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集U=R,集合A={x|x2-4x+3≥0},B={x|2k<x<k+1}.
(1)若A⊆∁UB,求实数k的取值范围;
(2)若(∁UA)∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案