13£®ÔÚÒ»´Î¶ÔÓÉ42ÃûѧÉú²Î¼ÓµÄ¿ÎÍâÀºÇò¡¢ÅÅÇòÐËȤС×飨ÿÈ˲μÓÇÒÖ»²Î¼ÓÒ»¸öÐËȤС×飩Çé¿öµ÷²éÖУ¬¾­Í³¼ÆµÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º£¨µ¥Î»£ºÈË£©
ÀºÇòÅÅÇò×ܼÆ
ÄÐͬѧ16622
Ůͬѧ81220
×ܼÆ241842
£¨1£©¾Ý´ËÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.05µÄǰÌáÏÂÈÏΪ²Î¼Ó¡°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÓйأ¿
£¨2£©ÔÚͳ¼Æ½á¹ûÖУ¬°´ÐÔ±ðÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡7Ãûͬѧ½øÐÐ×ù̸£¬¼×¡¢ÒÒÁ½ÃûŮͬѧÖб»³éÖеÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©£®
ÏÂÃæÊÇÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
²Î¿¼¹«Ê½£ºk2=$\frac{n£¨ad-bc£©}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

·ÖÎö £¨1£©Óɱí¸ñÊý¾Ý¿ÉµÃK2µÄ¹Û²âÖµ£¬k¡Ö4.582£¬¿ÉµÃ4.582£¾3.841£¬¸ù¾Ý¡°¶ÀÁ¢ÐÔ¼ìÑéÔ­Àí¡±¼´¿ÉµÃ³ö½áÂÛ£®
£¨2£©ÓÉÌâÒâ¿ÉÖª£º±»³é³öµÄ7ÃûͬѧÖУ¬ÓÐ4ÃûÄÐͬѧ£¬ÓÐ3ÃûŮͬѧ£¬XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£®ÀûÓ󬼸ºÎ·Ö²¼ÁмÆË㹫ʽ¼´¿ÉµÃ³ö·Ö²¼ÁУ¬½ø¶øµÃ³öÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©Óɱí¸ñÊý¾Ý¿ÉµÃK2µÄ¹Û²âÖµ£¬k=$\frac{42¡Á£¨16¡Á12-6¡Á8£©^{2}}{24¡Á18¡Á22¡Á20}$¡Ö4.582£¬¡ß4.582£¾3.841£¬¡àÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.05µÄǰÌáÏÂÈÏΪ²Î¼Ó¡°ÀºÇòС×顱»ò¡°ÅÅÇòС×顱ÓëÐÔ±ðÓйأ®
£¨2£©ÓÉÌâÒâ¿ÉÖª£º±»³é³öµÄ7ÃûͬѧÖУ¬ÓÐ4ÃûÄÐͬѧ£¬ÓÐ3ÃûŮͬѧ£¬XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£®P£¨X=0£©=$\frac{{∁}_{16}^{3}}{{∁}_{18}^{3}}$=$\frac{35}{51}$£¬P£¨X=1£©=$\frac{{∁}_{16}^{2}{∁}_{2}^{1}}{{∁}_{18}^{3}}$=$\frac{5}{17}$£¬P£¨X=2£©=$\frac{{∁}_{16}^{1}{∁}_{2}^{2}}{{∁}_{18}^{3}}$=$\frac{1}{51}$£®
Æä·Ö²¼ÁÐÈçÏ£º

X012
P$\frac{35}{51}$$\frac{5}{17}$$\frac{1}{51}$
Óɱí¸ñ¿ÉµÃ£ºE£¨X£©=$0¡Á\frac{35}{51}$+$1¡Á\frac{5}{17}$+2¡Á$\frac{1}{51}$=$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÔ­Àí¡¢³¬¼¸ºÎ·Ö²¼ÁмÆË㹫ʽ¼°ÆäÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®²àÀⳤÊÇ2µÄÕýÈýÀâ×¶£¬Æäµ×Ãæ±ß³¤ÊÇ1£¬ÔòÀâ×¶µÄ¸ßÊÇ$\frac{\sqrt{33}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É躯Êýf£¨x£©=ex+ln£¨x+1£©-ax£®
£¨1£©µ±a=2ʱ£¬ÅжϺ¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£»
£¨2£©µ±x¡Ý0ʱ£¬f£¨x£©¡Ýcosxºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{x}$+$\sqrt{6-2x}$£¬Çóf£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÆæº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©£¬f¡ä£¨x£©ÎªÆäµ¼º¯Êý£¬ÇÒÂú×ãÒÔÏÂÌõ¼þ
¢Ùx£¾0ʱ£¬f¡ä£¨x£©£¼$\frac{3f£¨x£©}{x}$£»¢Úf£¨1£©=$\frac{1}{2}$£»¢Ûf£¨2x£©=2f£¨x£©
Ôò²»µÈʽ$\frac{f£¨x£©}{4x}$£¼2x2µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-$\frac{1}{4}$£¬$\frac{1}{4}$£©B£®£¨-¡Þ£¬-$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£©C£®£¨-$\frac{1}{4}$£¬0£©¡È£¨0£¬$\frac{1}{4}$£©D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¹ØÓÚº¯Êýf£¨x£©=£¨2x-$\frac{1}{{2}^{x}}$£©•x3ºÍʵÊým¡¢nµÄÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô-3¡Üm£¼n£¬Ôòf£¨m£©£¼f£¨n£©B£®Èôm£¼n¡Ü0£¬Ôòf£¨m£©£¼f£¨n£©
C£®Èôf£¨m£©£¼f£¨n£©£¬Ôòm2£¼n2D£®Èôf£¨m£©£¼f£¨n£©£¬Ôòm3£¼n3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèa=$\int_0^¦Ð$£¨sinx-1+2cos2$\frac{x}{2}$£©dx£¬Ôò£¨a$\sqrt{x}$-$\frac{1}{{\sqrt{x}}}}$£©6•£¨x2+2£©µÄÕ¹¿ªÊ½Öг£ÊýÏîÊÇ£¨¡¡¡¡£©
A£®332B£®-332C£®320D£®-320

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¾ØÐÎABCDµÄ³¤Îª2£¬¿íΪ1£¬AB¡¢AD±ß·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬AµãÓë×ø±êÔ­µãÖØºÏ£¨ÈçͼËùʾ£©£¬½«¾ØÐÎÕÛµþ£¬Ê¹AµãÂäÔÚÏß¶ÎDCÉÏ£¬ÉèÕÛºÛËùÔÚÖ±ÏßµÄбÂÊΪk£®
£¨1£©ÊÔд³öÕÛºÛËùÔÚÖ±Ïߵķ½³Ì£»
£¨2£©Ð´³öÕۺ۵ij¤d¹ØÓÚбÂÊkµÄº¯Êý¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýf£¨x£©=ax+£¨$\frac{1}{a}$£©x£¨a£¾0ÇÒa¡Ù1£©ÊÇ£¨¡¡¡¡£©
A£®Ææº¯ÊýÒ²ÊÇżº¯ÊýB£®Å¼º¯Êý
C£®¼È·ÇÆæº¯ÊýÒ²·Çżº¯ÊýD£®Ææº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸