| A. | (-$\frac{1}{4}$,$\frac{1}{4}$) | B. | (-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞) | C. | (-$\frac{1}{4}$,0)∪(0,$\frac{1}{4}$) | D. | ∅ |
分析 构造函数F(x)=$\frac{f(x)}{{x}^{3}}$,依题意,可分析得到F(x)=$\frac{f(x)}{{x}^{3}}$为偶函数,在(0,+∞)上单调递减,在(-∞,0)上单调递增,$\frac{f(x)}{4x}$<2x2?$\frac{f(x)}{{x}^{3}}$<8,即F(x)<F($\frac{1}{4}$),从而可得答案.
解答 解:令F(x)=$\frac{f(x)}{{x}^{3}}$,则F′(x)=$\frac{xf′(x)-3f(x)}{{x}^{4}}$,
∵x>0时,f′(x)<$\frac{3f(x)}{x}$,
∴F′(x)<0,
∴F(x)在(0,+∞)上单调递减,又f(x)为奇函数,
∴F(x)=$\frac{f(x)}{{x}^{3}}$为偶函数,
∴F(x)在(-∞,0)上单调递增,
又f(1)=$\frac{1}{2}$,f(2x)=2f(x),
∴f($\frac{1}{2}$)=$\frac{1}{2}$f(1)=$\frac{1}{4}$,f($\frac{1}{4}$)=$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{8}$,
∴F($\frac{1}{4}$)=$\frac{f(\frac{1}{4})}{{(\frac{1}{4})}^{3}}$=8,
∴$\frac{f(x)}{4x}$<2x2?$\frac{f(x)}{{x}^{3}}$<8,即F(x)<F($\frac{1}{4}$),故|x|>$\frac{1}{4}$,
解得:x∈(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞).
故选:B.
点评 本题考查利用导数研究函数的单调性,构造函数F(x)=$\frac{f(x)}{{x}^{3}}$是关键,也是难点,考查分析、推理与逻辑思维能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 篮球 | 排球 | 总计 | |
| 男同学 | 16 | 6 | 22 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 24 | 18 | 42 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a5=$\frac{5}{9}$a2+$\frac{4}{9}$a9 | B. | a7=$\frac{7}{11}$a3+$\frac{4}{11}$a14 | C. | a6=$\frac{2}{3}$a5+$\frac{4}{3}$a8 | D. | a8=$\frac{2}{9}$a3+$\frac{7}{9}$a10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com