18£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãT£¨-2£¬$\sqrt{3}$£©ÔÚÍÖÔ²¦£ÉÏ£¬ÇÒ|TF1|+|TF2|=8£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µãP£¬QÔÚÍÖÔ²¦£ÉÏ£¬OÎª×ø±êÔ­µã£¬ÇÒÖ±ÏßOP£¬OQµÄбÂÊÖ®»ýΪ$\frac{1}{4}$£¬ÇóÖ¤£º|OP|2+|OQ|2Ϊ¶¨Öµ£»
£¨3£©Ö±Ïßl¹ýµã£¨-1£¬0£©ÇÒÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãM£¬Ê¹µÃ$\overrightarrow{MA}$$•\overrightarrow{MB}$Ϊ³£Êý£¿Èô´æÔÚ£¬Çó³öµãM×ø±êÒÔ¼°´Ë³£ÊýµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓɵãT£¨-2£¬$\sqrt{3}$£©ÔÚÍÖÔ²¦£ÉÏ£¬ÇÒ|TF1|+|TF2|=8£¬Áгö·½³Ì×éÇó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©ÉèÖ±ÏßOP£ºy=kx£¬ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$£¬Çó³ö|OP|2£¬Í¬ÀíÇó³ö|OQ|2£¬ÓÉ´ËÄÜÖ¤Ã÷|OP|2+|OQ|2Ϊ¶¨Öµ£®
£¨3£©µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬Éèl£ºy=k£¨x+1£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8k2x+£¨4k2-16£©=0£¬ÍƵ¼³ö$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬µ±lÓëxÖᴹֱʱ£¬l£ºx=-1£¬A£¨-1£¬$\frac{\sqrt{15}}{2}$£©£¬B£¨-1£¬-$\frac{\sqrt{15}}{2}$£©£¬´Ó¶ø$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬
µãT£¨-2£¬$\sqrt{3}$£©ÔÚÍÖÔ²¦£ÉÏ£¬ÇÒ|TF1|+|TF2|=8£¬
¡à$\left\{\begin{array}{l}{2a=8}\\{\frac{4}{{a}^{2}}+\frac{3}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃa=4£¬b=2£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1£®
Ö¤Ã÷£º£¨2£©ÉèÖ±ÏßOP£ºy=kx£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$£¬µÃx=$¡À\frac{4}{\sqrt{1+4{k}^{2}}}$£¬
¡à|OP|2=${x}^{2}+{y}^{2}=\frac{16+16{k}^{2}}{1+4{k}^{2}}$£¬
ÓÖÖ±ÏßOQ£º$y=\frac{1}{4k}x$£¬
 Í¬Àí£¬µÃ|OQ|2=$\frac{16+16£¨\frac{1}{4k}£©^{2}}{1+4£¨\frac{1}{4k}£©^{2}}$=$\frac{4+64{k}^{2}}{1+4{k}^{2}}$£¬
¡à|OP|2+|OQ|2=$\frac{16+16{k}^{2}}{1+4{k}^{2}}+\frac{4+64{k}^{2}}{1+4{k}^{2}}$=$\frac{20+80{k}^{2}}{1+4{k}^{2}}$=20£¬Îª¶¨Öµ£®
½â£º£¨3£©µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬Éèl£ºy=k£¨x+1£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8k2x+£¨4k2-16£©=0£¬
ÓÖ$\overrightarrow{MA}$=£¨x1-t£¬y1£©£¬$\overrightarrow{MB}$=£¨x2-t£¬y2£©£¬
¡à$\overrightarrow{MA}•\overrightarrow{MB}$=£¨x1-t£©£¨x2-t£©+y1y2=£¨x1-t£©£¨x2-t£©+k£¨x1+1£©•k£¨x2+1£©
=£¨1+k2£©x1x2+£¨k2-t£©£¨x1+x2£©+£¨k2+t2£©=$\frac{£¨{t}^{2}-16£©+£¨4{t}^{2}+8t-11£©{k}^{2}}{1+4{k}^{2}}$£¬
Áî$\frac{{t}^{2}-16}{1}=\frac{4{t}^{2}+8t-11}{4}$£¬µÃt=-$\frac{53}{8}$£¬´Ëʱ$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬
µ±lÓëxÖᴹֱʱ£¬l£ºx=-1£¬A£¨-1£¬$\frac{\sqrt{15}}{2}$£©£¬B£¨-1£¬-$\frac{\sqrt{15}}{2}$£©£¬
ÓÖM£¨-$\frac{53}{8}$£¬0£©£¬¡à$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬
×ÛÉÏ£¬M£¨-$\frac{53}{8}$£¬0£©£¬$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²é´úÊýʽΪ¶¨ÖµµÄÖ¤Ã÷£¬¿¼²éÂú×ãÏòÁ¿µÄÊýÁ¿»ýΪ¶¨ÖµµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖªCD=2DB£¬BA=5BE£¬AF=mAD£¬AG=tAC£®
£¨1£©Èô$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬ÓÃ$\overrightarrow{a}$£¬$\overrightarrow{b}$±íʾ$\overrightarrow{AD}$£»
£¨2£©Éè$\frac{1}{3}$¡Üm¡Ü$\frac{1}{2}$£¬ÇótµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Éèf£¨x£©=$\frac{x}{\sqrt{1+{x}^{2}}}$£¬Çóf[f£¨x£©]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªµãPÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÓÒÖ§ÉÏÒ»µã£¬F1¡¢F2·Ö±ðΪ˫ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©Ö¤Ã÷£º¡÷PF1F2µÄÄÚÇÐÔ²µÄÔ²Ðĵĺá×ø±êΪa£»
£¨2£©ÈôµãM£¨a£¬2£©£¬ÇÒ$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$=$\frac{\overrightarrow{{{F}_{2}F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$£¬Çó¡÷PMF1¡¢Óë¡÷PMF2µÄÃæ»ýÖ®²î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®É躯Êýf£¨x£©=-lnx+ax2+£¨1-2a£©x+a-1£¬£¨x¡Ê£¨0£¬+¡Þ£©£¬ÊµÊýa¡ÊR£©£®
£¨¢ñ£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èôf£¨x£©£¾0ÔÚx¡Ê£¨0£¬1£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®²àÀⳤÊÇ2µÄÕýÈýÀâ×¶£¬Æäµ×Ãæ±ß³¤ÊÇ1£¬ÔòÀâ×¶µÄ¸ßÊÇ$\frac{\sqrt{33}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÕýËÄÀâ×¶P-ABCDµÄµ×Ãæ±ß³¤Îª2£¬²àÀⳤΪ$\sqrt{10}$£¬µãOΪµ×ÃæABCDµÄÖÐÐÄ£®
£¨1£©ÇóÖ¤£ºPA¡ÍBD£»
£¨2£©ÈôEΪPCÖе㣬ÇóBEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÏÖÓÐ25¸ö×Öĸ£¬Ã¿¸ö×Öĸ´ú±íÒ»¸öÊý×Ö£¬½«×ÖĸÅÅÁÐÈç±í£¬Ê¹µÃ±í¸ñÖеĸ÷ÐС¢¸÷Áоù³ÉµÈ²îÊýÁУ¬ÈôG=3£¬I=5£¬Q=9£¬S=19£¬ÔòµÚÒ»ÐÐ×Öĸ´ú±íµÄÊý×ÖÖ®ºÍΪ-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÆæº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©£¬f¡ä£¨x£©ÎªÆäµ¼º¯Êý£¬ÇÒÂú×ãÒÔÏÂÌõ¼þ
¢Ùx£¾0ʱ£¬f¡ä£¨x£©£¼$\frac{3f£¨x£©}{x}$£»¢Úf£¨1£©=$\frac{1}{2}$£»¢Ûf£¨2x£©=2f£¨x£©
Ôò²»µÈʽ$\frac{f£¨x£©}{4x}$£¼2x2µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-$\frac{1}{4}$£¬$\frac{1}{4}$£©B£®£¨-¡Þ£¬-$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£©C£®£¨-$\frac{1}{4}$£¬0£©¡È£¨0£¬$\frac{1}{4}$£©D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸