·ÖÎö £¨1£©ÓɵãT£¨-2£¬$\sqrt{3}$£©ÔÚÍÖÔ²¦£ÉÏ£¬ÇÒ|TF1|+|TF2|=8£¬Áгö·½³Ì×éÇó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©ÉèÖ±ÏßOP£ºy=kx£¬ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$£¬Çó³ö|OP|2£¬Í¬ÀíÇó³ö|OQ|2£¬ÓÉ´ËÄÜÖ¤Ã÷|OP|2+|OQ|2Ϊ¶¨Öµ£®
£¨3£©µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬Éèl£ºy=k£¨x+1£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8k2x+£¨4k2-16£©=0£¬ÍƵ¼³ö$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬µ±lÓëxÖᴹֱʱ£¬l£ºx=-1£¬A£¨-1£¬$\frac{\sqrt{15}}{2}$£©£¬B£¨-1£¬-$\frac{\sqrt{15}}{2}$£©£¬´Ó¶ø$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬
µãT£¨-2£¬$\sqrt{3}$£©ÔÚÍÖÔ²¦£ÉÏ£¬ÇÒ|TF1|+|TF2|=8£¬
¡à$\left\{\begin{array}{l}{2a=8}\\{\frac{4}{{a}^{2}}+\frac{3}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃa=4£¬b=2£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1£®
Ö¤Ã÷£º£¨2£©ÉèÖ±ÏßOP£ºy=kx£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$£¬µÃx=$¡À\frac{4}{\sqrt{1+4{k}^{2}}}$£¬
¡à|OP|2=${x}^{2}+{y}^{2}=\frac{16+16{k}^{2}}{1+4{k}^{2}}$£¬
ÓÖÖ±ÏßOQ£º$y=\frac{1}{4k}x$£¬
ͬÀí£¬µÃ|OQ|2=$\frac{16+16£¨\frac{1}{4k}£©^{2}}{1+4£¨\frac{1}{4k}£©^{2}}$=$\frac{4+64{k}^{2}}{1+4{k}^{2}}$£¬
¡à|OP|2+|OQ|2=$\frac{16+16{k}^{2}}{1+4{k}^{2}}+\frac{4+64{k}^{2}}{1+4{k}^{2}}$=$\frac{20+80{k}^{2}}{1+4{k}^{2}}$=20£¬Îª¶¨Öµ£®
½â£º£¨3£©µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬Éèl£ºy=k£¨x+1£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8k2x+£¨4k2-16£©=0£¬
ÓÖ$\overrightarrow{MA}$=£¨x1-t£¬y1£©£¬$\overrightarrow{MB}$=£¨x2-t£¬y2£©£¬
¡à$\overrightarrow{MA}•\overrightarrow{MB}$=£¨x1-t£©£¨x2-t£©+y1y2=£¨x1-t£©£¨x2-t£©+k£¨x1+1£©•k£¨x2+1£©
=£¨1+k2£©x1x2+£¨k2-t£©£¨x1+x2£©+£¨k2+t2£©=$\frac{£¨{t}^{2}-16£©+£¨4{t}^{2}+8t-11£©{k}^{2}}{1+4{k}^{2}}$£¬
Áî$\frac{{t}^{2}-16}{1}=\frac{4{t}^{2}+8t-11}{4}$£¬µÃt=-$\frac{53}{8}$£¬´Ëʱ$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬
µ±lÓëxÖᴹֱʱ£¬l£ºx=-1£¬A£¨-1£¬$\frac{\sqrt{15}}{2}$£©£¬B£¨-1£¬-$\frac{\sqrt{15}}{2}$£©£¬
ÓÖM£¨-$\frac{53}{8}$£¬0£©£¬¡à$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£¬
×ÛÉÏ£¬M£¨-$\frac{53}{8}$£¬0£©£¬$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\frac{1785}{64}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²é´úÊýʽΪ¶¨ÖµµÄÖ¤Ã÷£¬¿¼²éÂú×ãÏòÁ¿µÄÊýÁ¿»ýΪ¶¨ÖµµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-$\frac{1}{4}$£¬$\frac{1}{4}$£© | B£® | £¨-¡Þ£¬-$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£© | C£® | £¨-$\frac{1}{4}$£¬0£©¡È£¨0£¬$\frac{1}{4}$£© | D£® | ∅ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com