分析 (1)利用正方形的性质、等腰三角形的性质可得AC⊥BD,PO⊥BD,再利用线面垂直的判定与性质定理即可得出.
(2)在△PBC中,利用中线长定理即可得出.
解答 (1)证明:∵四边形ABCD是正方形,∴AC⊥BD,OB=OD,![]()
∵PB=PD,OB=OD,∴PO⊥BD,
又BD∩PO=O,∴BD⊥平面PAC,PA?平面PAC,
∴PA⊥BD.
(2)解:设BE=m,在△PBC中,
由中线长定理,$(\sqrt{10})^{2}$+22=2m2+2×$(\frac{\sqrt{10}}{2})^{2}$,解得m=$\frac{3\sqrt{2}}{2}$.
点评 本题考查了正方形的性质、等腰三角形的性质、线面垂直的判定与性质定理、中线长定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$$\sqrt{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1,1 | B. | -1,-1 | C. | 2,-2 | D. | 2,2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com