精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx+1.
(Ⅰ)证明:当x>0时,f(x)≤x;
(Ⅱ)设$g(x)=ax+({a-1})•\frac{1}{x}-lnx-1$,若g(x)≥0对x>0恒成立,求实数a的取值范围.

分析 (Ⅰ)先构造函数m(x)=lnx+1-x,然后求导,根据导数符号即可求出函数m(x)的最大值为0,即得到m(x)≤0,从而证得f(x)≤x;
(Ⅱ)根据x>0,$ax+(a-1)•\frac{1}{x}-lnx-1≥0$便可解得$a≥\frac{lnx+1+\frac{1}{x}}{x+\frac{1}{x}}$,而根据上面知lnx+1≤x恒成立,从而便可求得$\frac{lnx+1+\frac{1}{x}}{x+\frac{1}{x}}$的最大值,进而即可得出实数a的取值范围.

解答 解:(Ⅰ)证明:构造函数m(x)=f(x)-x=lnx+1-x,$m'(x)=\frac{1}{x}-1=\frac{1-x}{x}=0({x>0})$得x=1;
当x∈(0,1)时,m'(x)>0;当x∈(1,+∞)时,m'(x)<0;
∴[m(x)]max=m(1)=0;
∴m(x)≤0;
∴f(x)≤x;
(Ⅱ)若g(x)≥0对x>0恒成立等价于$a≥\frac{{lnx+1+\frac{1}{x}}}{{x+\frac{1}{x}}}$对x>0恒成立;
记$G(x)=\frac{{lnx+1+\frac{1}{x}}}{{x+\frac{1}{x}}}$,问题等价于a≥G(x)max
由(Ⅰ)知lnx+1≤x(当且仅当x=1时取得等号);
∴$G(x)=\frac{lnx+1+\frac{1}{x}}{x+\frac{1}{x}}≤\frac{x+\frac{1}{x}}{x+\frac{1}{x}}=1$(当且仅当x=1时取得等号);
故G(x)max=1,所以a≥1;
∴实数a的取值范围为[1,+∞).

点评 考查构造函数解决问题的方法,根据函数导数符号求函数最值的方法和过程,不等式的性质,在解决第二问时能用上第一问的结论很巧妙.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\sqrt{3+ax-{x}^{2}}$在[0,1]上单调递减,则实数a的取值范围为(  )
A.[0,2]B.[0,+∞)C.(-∞,0]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=-lnx+ax2+(1-2a)x+a-1,(x∈(0,+∞),实数a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若f(x)>0在x∈(0,1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正四棱锥P-ABCD的底面边长为2,侧棱长为$\sqrt{10}$,点O为底面ABCD的中心.
(1)求证:PA⊥BD;
(2)若E为PC中点,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图设M为线段AB中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(Ⅰ)写出图中三对相似三角形,并对其中一对作出证明;
(Ⅱ)连结FG,设α=45°,AB=4$\sqrt{2}$,AF=3,求FG长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.现有25个字母,每个字母代表一个数字,将字母排列如表,使得表格中的各行、各列均成等差数列,若G=3,I=5,Q=9,S=19,则第一行字母代表的数字之和为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C上的点S(x,y)到点M($\sqrt{3}$,0)的距离与它到直线x=$\frac{4}{\sqrt{3}}$的距离之比为$\frac{\sqrt{3}}{2}$,圆O的方程为x2+y2=4,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中D(-$\frac{6}{5}$,0),设直线AB,AC的斜率分别为k1、k2
(I) 求曲线C的方程,并证明S(x,y)到点M的距离d∈[2-$\sqrt{3}$,2+$\sqrt{3}$]
(Ⅱ)求k1k2的值;
(Ⅲ)记直线PQ,BC的斜率分别为kPQ、kBC,是否存在常数λ,使得kPQ=λkBC?若存在,求λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一慈善机构为筹集善款决定组织一场咅乐会.为筹备这场音乐会,必须完成A,B,C,D,E,F,G七项任务,每项任务所需时间及其关系(例如:E任务必须在A任务完成后才能进行)如表所示:
任务ABCDEFG
所需时间/周2143212
前期任务无要求无要求无要求A,B,CAA,B,C,D,EA,B,C,D,E
则完成这场音乐会的筹备工作需要的最短时间为(  )
A.8周B.9周C.10周D.12周

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.集合A={x|kx2-8x+16=0},若集合A中至多含有一个元素,则k的取值范围为{0}∪[1,+∞).

查看答案和解析>>

同步练习册答案