精英家教网 > 高中数学 > 题目详情
11.一慈善机构为筹集善款决定组织一场咅乐会.为筹备这场音乐会,必须完成A,B,C,D,E,F,G七项任务,每项任务所需时间及其关系(例如:E任务必须在A任务完成后才能进行)如表所示:
任务ABCDEFG
所需时间/周2143212
前期任务无要求无要求无要求A,B,CAA,B,C,D,EA,B,C,D,E
则完成这场音乐会的筹备工作需要的最短时间为(  )
A.8周B.9周C.10周D.12周

分析 根据各筹备任务的先后顺序做出统筹安排,尽量将多项工作同时展开以节约时间.

解答 解:第一周任务ABC,第二周任务AC,第三周任务CE,第四周任务CE,
第五周到第七周任务D,第八周任务FG,第九周任务G.
故最短需要9周完成筹备任务.
故选B.

点评 本题考查了统筹思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设a,b∈R,若矩阵A=$(\begin{array}{l}{1}&{a}\\{b}&{0}\end{array})$的变换把直线l:x+y-1=0变换为另一直线l′:x+2y+l=0.
(1)求a,b的值.
(2)求矩阵A的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+1.
(Ⅰ)证明:当x>0时,f(x)≤x;
(Ⅱ)设$g(x)=ax+({a-1})•\frac{1}{x}-lnx-1$,若g(x)≥0对x>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{x}}{a{x}^{2}+bx+c}$.其中a,b,c∈R.
(1)若a=1,b=1,c=1,求f(x)的单调区间;
(2)若b=c=1,且当x≥0时,f(x)≥1总成立,求实数a的取值范围;
(3)若a>0,b=0,c=1,若f(x)存在两个极值点x1,x2,求证:e$\sqrt{\frac{1}{a}}$<f(x1)+f(x2)<$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.小明在研究三棱锥的时候,发现下面一个真命题,在三棱锥A-BCD中,已知∠BAC=α,∠CAD=β,∠DAB=γ(如图),设二面角B-AC-D的大小为θ,则cosθ=$\frac{f(λ)-cosαcosβ}{sinαsinβ}$,其中f(γ)是一个与γ有关的代数式,请写出符合条件的f(γ)=cosγ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow{b}$;$\overrightarrow{DB}$=$\overrightarrow{a}$-$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{2x-a}{{x}^{2}+3}$在区间[-1,1]上是增函数.
(1)求实数a的取值范围的组成集合A.
(2)关于x的方程f(x)=$\frac{1}{x}$的两个非零实根为x1,x2.试问是否存在实数m,使得不等式m2+tm+2≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列四个命题中,正确的是②③④.(填写命题序号)
①若f(2)<4成立,则f(10)<100;②若f(3)>9成立,则当k≥4时,均有f(k)>k2成立;③若f(4)≥25成立,则当k≥4时,均有f(k)≥k2成立;④若f(5)<25成立,则f(1)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若集合A=(-2,4),B=(-∞,m)∪[m+8,+∞).
(1)若m=3,全集U=A∪B,试求A∩(∁UB);
(2)若A∩B=∅,求负实数m的取值范围;
(3)若A∩B=A,求正实数m的取值范围.

查看答案和解析>>

同步练习册答案