| A. | a5=$\frac{5}{9}$a2+$\frac{4}{9}$a9 | B. | a7=$\frac{7}{11}$a3+$\frac{4}{11}$a14 | C. | a6=$\frac{2}{3}$a5+$\frac{4}{3}$a8 | D. | a8=$\frac{2}{9}$a3+$\frac{7}{9}$a10 |
分析 设等差数列{an}的首项为a1,公差为d,然后逐一核对四个选项得答案.
解答 解:设等差数列{an}的首项为a1,公差为d,
对于A,a5=a1+4d,$\frac{5}{9}$a2+$\frac{4}{9}{a}_{9}$=$\frac{5}{9}({a}_{1}+d)+\frac{4}{9}({a}_{1}+8d)$=${a}_{1}+\frac{37}{9}d$,故A不成立;
对于B,a7=a1+6d,$\frac{7}{11}$a3+$\frac{4}{11}{a}_{14}$=$\frac{7}{11}({a}_{1}+2d)+\frac{4}{11}({a}_{1}+13d)$=a1+6d,故B成立;
对于C,a6=a1+5d,$\frac{2}{3}$a5+$\frac{4}{3}{a}_{8}$=$\frac{2}{3}({a}_{1}+4d)+\frac{4}{3}({a}_{1}+7d)=2{a}_{1}+\frac{34}{3}d$,故C不成立;
对于D,a8=a1+7d,$\frac{2}{9}{a}_{3}+\frac{7}{9}{a}_{10}$=$\frac{2}{9}({a}_{1}+2d)+\frac{7}{9}({a}_{1}+9d)={a}_{1}+\frac{67}{9}d$,故D不成立.
故选:B.
点评 本题考查等差数列的通项公式,考查了等差数列的性质,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{4}$,$\frac{1}{4}$) | B. | (-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞) | C. | (-$\frac{1}{4}$,0)∪(0,$\frac{1}{4}$) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 332 | B. | -332 | C. | 320 | D. | -320 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com