【题目】长方形
中,
,
是
中点(图1).将
沿
折起,使得
(图2)在图2中:
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存点
,使得二面角
的余弦值为
,说明理由.
【答案】(1)证明见解析(2)存在,理由见解析
【解析】
(1)利用勾股定理与线面垂直的性质证明
平面
即可.
(2) 以
为坐标原点,
为
轴,
为
轴,过
作平面
的垂线为
轴,建立空间直角坐标系. 设
,再根据二面角的向量方法,分别求解面的法向量,再根据法向量的夹角求解即可.
(1)在长方形
中,连结
,因为
,
是
中点,
所以
,从而
,
所以![]()
因为
,
,
所以
平面
.
因为
平面
,
所以平面
平面
.
(2)因为平面
平面
,交线是
,
所以在面
过
垂直于
的直线必然垂直平面
.
以
为坐标原点,
为
轴,
为
轴,过
作平面
的垂线为
轴,
建立空间直角坐标系.
![]()
则
,
,
,
.设
,则
.
设
是平面
的法向量,
则
,即
,取
,
平取面
的一个法向量是
.
依题意
,
即
,解方程得
,
因此在线段
上存点
,使得二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】有下列命题:
①在函数
的图象中,相邻两个对称中心的距离为
;
②函数
的图象关于点
对称;
③“
且
”是“
”的必要不充分条件;
④在
中,若
,则角
等于
或
.
其中是真命题的序号为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上一动点P到定点C(1,0)的距离与它到直线
的距离之比为
.
(1)求点P的轨迹方程;
(2)点O是坐标原点,A,B两点在点P的轨迹上,F是点C关于原点的对称点,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢尔宾斯基三角形(Sierpinski triangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.在一个正三角形中,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的部分,黑色三角形为剩下的部分,我们称此三角形为谢尔宾斯基三角形.若在图(3)内随机取一点,则此点取自谢尔宾斯基三角形的概率是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+
)ex﹣2x,若f(x)<0的解集中有且只有一个正整数,则实数k的取值范围为 ( )
A. [
,
)B. (
,
]
C. [
)D. [
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备
年的年平均污水处理费用为
(单位:万元)
(1)用
表示
;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】工厂抽取了在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.
![]()
(1)计算该样本的平均值
,方差
;(同一组中的数据用该组区间的中点值作代表)
(2)若质量指标值在
之内为一等品.
(i)用样本估计总体,问该工厂一天生产的产品是否有
以上为一等品?
(ii)某天早上、下午分别抽检了50件产品,完成下面的表格,并根据已有数据,判断是否有
的把握认为一等品率与生产时间有关?
一等品个数 | 非一等品个数 | 总计 | |
早上 | 36 | 50 | |
下午 | 26 | 50 | |
总计 |
附:
.
| 0.25 | 0.15 | 0.10 | 0.050 | 0.010 | 0.001 |
| 1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.
年龄 (单位:岁) |
|
|
|
|
|
|
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面
列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在
的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com