【题目】有下列命题:
①在函数
的图象中,相邻两个对称中心的距离为
;
②函数
的图象关于点
对称;
③“
且
”是“
”的必要不充分条件;
④在
中,若
,则角
等于
或
.
其中是真命题的序号为_____________.
科目:高中数学 来源: 题型:
【题目】已知圆心在
轴上的圆
与直线
切于点
、圆
.
(1)求圆
的标准方程;
(2)已知
,圆
于
轴相交于两点
(点
在点
的右侧)、过点
任作一条倾斜角不为0的直线与圆
相交于
两点、问:是否存在实数
,使得
?若存在,求出实数
的值,若不存在,请说明理由、
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P-ABC中,顶点P在底面ABC的投影G是ABC的外心,PB=BC=2,则面PBC与底面ABC所成的二面角的大小为60,则三棱锥PABC的外接球的表面积为______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)令
,若
在区间
上不单调,求
的取值范围;
(2)当
时,函数
的图象与
轴交于两点
,
,且
,又
是
的导函数.若正常数
,
满足条件
,
.试比较
与0的关系,并给出理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列
的前
项中最大值为
,最小值为
,令
.
(1)若
,写出
,
,
,
的值;
(2)设
,若
,求
的值及
时数列
的前
项和
;
(3)求证:“数列
是等差数列”的充要条件是“数列
是等差数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如下表:
![]()
(1)根据表中数据,建立
关于
的线性回归方程
;
(2)若近几年该农产品每千克的价格
(单位:元)与年产量
满足的函数关系式为
,且每年该农产品都能售完.
①根据(1)中所建立的回归方程预测该地区
年该农产品的产量;
②当
为何值时,销售额
最大?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在底面为梯形的四棱锥S﹣ABCD中,已知AD∥BC,∠ASC=60°,
,SA=SC=SD=2.
(1)求证:AC⊥SD;
(2)求三棱锥B﹣SAD的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com