精英家教网 > 高中数学 > 题目详情

如图,在棱长为1的正方体-中,点到平面的距离   。

解析考点:点、线、面间的距离计算.
分析:利用等体积即Vc-A1BD=VA1-BCD,转化为点C到平面A1BD的距离.
解:构造三棱锥C-A1DB,并且有Vc-A1BD=VA1-BCD
因为VA1-BCD= sh=××1×1×1=
所以Vc-A1BD=
设点C到平面A1BD的距离为x,
又因为Vc-A1BD=×SA1BD×x= =
所以x=,即点C到平面A1BD的距离为
故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

三条平行直线可以确定平面_________个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若直线a,b异面,则经过a且平行于b的平面有       个。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量p的模是,向量q的模为1,p与q的夹角为,a=3p+2q,b=p-q,则以a、b为邻边的平行四边形的长度较小的对角线的长是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

求圆上的点到直线的距离的最小值                  .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若正三棱柱的棱长均相等,则与侧面所成角的正切值为     .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方体中,分别为 的中点,则直线与平面所成角的余弦值等于             

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知空间四边形分别是中点,,则所成的角的大小为_________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在矩形ABCD中,AB=4,BC=3,E为DC边的中点,沿AE将折起,使二面角D-AE-B为,则直线AD与面ABCE所成角的正弦值为   ▲    

查看答案和解析>>

同步练习册答案