精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy 中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率e=
(1)求椭圆G 的标准方程;
(2)已知直线l1:y=kx+m1与椭圆G交于 A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示. ①证明:m1+m2=0;
②求四边形ABCD 的面积S 的最大值.

【答案】
(1)解:设椭圆G的方程为 (a>b>0)

∵左焦点为F1(﹣1,0),离心率e= .∴c=1,a=

b2=a2﹣c2=1

椭圆G 的标准方程为:


(2)解:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4

①证明:由 消去y得(1+2k2)x2+4km1x+2m12﹣2=0

x1+x2= ,x1x2=

|AB|= =2

同理|CD|=2

由|AB|=|CD|得2 =2

∵m1≠m2,∴m1+m2=0

②四边形ABCD 是平行四边形,设AB,CD间的距离d=

∵m1+m2=0,∴

∴s=|AB|×d=2 ×

= .

所以当2k2+1=2m12时,四边形ABCD 的面积S 的最大值为2


【解析】(1)由焦点坐标及离心率可求得a、b、c即可.(2)①利用弦长公式及韦达定理,表示出由|AB|、|CD|,由|AB|=|CD|得到m1+m2=0, ②边形ABCD 是平行四边形,设AB,CD间的距离d= ,由m1+m2=0得s=|AB|×d=2 × = .即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆E的方程为 +y2=1(a>1),O为坐标原点,直线l与椭圆E交于点A,B,M为线段AB的中点.
(1)若A,B分别为E的左顶点和上顶点,且OM的斜率为﹣ ,求E的标准方程;
(2)若a=2,且|OM|=1,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且 ,则4f(x)>f'(x)的解集为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=ln(x+a)﹣x,曲线y=f(x)与x轴相切. (Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数m使得 恒成立?若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数 f (x)的导函数为f'(x),且满足f'(x)﹣2f (x)>4,若 f (0)=﹣1,则不等式f(x)+2>e2x的解集为(
A.(0,+∞)
B.(﹣1,+∞)
C.(﹣∞,0)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ﹣ )=2 (Ⅰ)将直线l化为直角坐标方程;
(Ⅱ)求曲线C上的一点Q 到直线l 的距离的最大值及此时点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,E,F分别是AD,DD1的中点,AB=4,则过B,E,F的平面截该正方体所得的截面周长为(
A.6 +4
B.6 +2
C.3 +4
D.3 +2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2ωxcosφ+cos2ωxsinφ+ cos( +φ)(0<φ<π),其图象上相邻两条对称轴之间的距离为π,且过点( ). (I)求ω和φ的值;
(II)求函数y=f(2x),x∈[0, ]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:

投资股市

获利40%

不赔不赚

亏损20%

购买基金

获利20%

不赔不赚

亏损10%

概率P

概率P

p

q

(I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于 ,求p的取值范围;
(II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出 ,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

查看答案和解析>>

同步练习册答案