精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;

【答案】证明:(1)如图,

连接AC交BD于点O,连接OE.
∵点O、E分别为AC、SC的中点,
∴OE∥SA,又OE平面BDE,SA平面BDE,
∴SA∥平面BDE;
(2)证明:∵SD=DC,E是SC的中点,∴DE⊥SC,
又SD⊥底面ABCD,∴平面SDC⊥平面ABCD,
∵底面ABCD是矩形,∴BC⊥平面SDC,
∴BC⊥DE,
又SC∩BC=C,∴DE⊥平面SBC,
又SB平面SBC,∴SB⊥DE,
又EF⊥SB,
EF∩ED=E,
∴SB⊥平面EFD;
【解析】(1)连接AC交BD于点O,连接OE.然后利用三角形中位线的性质可得OE∥SA,再由线面平行的判定定理证得SA∥平面BDE;
(2)由SD=DC,E是SC的中点可得DE⊥SC,再由面面垂直的判定和性质得到BC⊥平面SDC,从而得到BC⊥DE,进一步得到SB⊥DE,结合已知EF⊥SB,由线面垂直的判定得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为An , 对任意n∈N*满足 = ,且a1=1,数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn= + ,数列{cn}的前n项和为Tn , 若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求这个新数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】单选题
束】
9

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

(I)请完成列联表

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?

参考公式和临界值表

,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是(  )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).

(1)若,且a分别与垂直,求向量a的坐标;

(2)若,且,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+2=2an(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 数列{}的前n项和为Tn , 证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知值域为[﹣1,+∞)的二次函数满足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的两个实根x1 , x2满足|x1﹣x2|=2.
(1)求f(x)的表达式;
(2)函数g(x)=f(x)﹣kx在区间[﹣1,2]内的最大值为f(2),最小值为f(﹣1),求实数k的取值范围.

查看答案和解析>>

同步练习册答案