【题目】甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为,,和的分布列如下表.
()分别求期望和.
()试对这两名工人的技术水平进行比较.
【答案】(1),;(2)见解析.
【解析】试题分析:()分别用公式可求得期望和.()由(1)知,两人出现次品的平均数相同,技术水平相当,但可求得,可见乙的技术较稳定.
试题解析:(),
.
()工人甲生产次品数的方差,
工人乙生产次品数的方差.
由知,两人出现次品的平均数相同,技术水平相当,但,可见乙的技术较稳定.
点晴:均值仅体现了随机变量取值的平均大小,但有时仅知道均值的大小还不够.如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,即计算方差.方差大说明随机变量取值较分散,方差小说明取值比较集中与稳定.即不要误认为均值相等时,水平就一样好,还要看一下相对于均值的偏离程度,也就是看哪一个相对稳定.
科目:高中数学 来源: 题型:
【题目】(本题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“海之旅”表演队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时刻而周期性变化.为了了解变化规律,该团队观察若干天后,得到每天各时刻的浪高数据的平均值如下表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.0 | 1.4 | 1.0 | 0.6 | 1.0 | 1.4 | 0.9 | 0.6 | 1.0 |
(1)从中选择一个合适的函数模型,并求出函数解析式;
(2)如果确定当浪高不低于0.8米时才进行训练,试安排白天内恰当的训练时间段.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知抛物线C:y2=4x的焦点为F,直线l经过点F且与抛物线C相交于A、B两点.
(1)若线段AB的中点在直线y=2上,求直线l的方程;
(2)若线段|AB|=20,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣mx(m∈R).
(1)当m=0时,求函数f(x)的零点个数;
(2)当m≥0时,求证:函数f(x)有且只有一个极值点;
(3)当b>a>0时,总有 >1成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正确结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次考试无纸化阅卷的评分规则的程序如图所示,x1 , x2 , x3为三个评卷人对同一道题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3=( )
A.11
B.10
C.8
D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0, f(1)=-2.
(1)求证:f(x)是奇函数;
(2)判断函数的单调性
(3)求f(x)在[-3,3]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com