精英家教网 > 高中数学 > 题目详情
设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两实数根分别为3和1,图象过点(0,3).
(1)求f(x)的解析式;
(2)求函数f(x)在区间[-1,3]上的最大值.
分析:(1)设y=ax2+bx+c(a≠0),由题意得,c=3,-
b
2a
=2
c
a
=3
,由此能求出f(x).
(2)由f(x)的对称轴x=2,能求出f(x)在区间[-1,3]上的最大值.
解答:解:(1)设y=ax2+bx+c(a≠0),
由题意得,c=3,-
b
2a
=2
c
a
=3

∴a=1,b=-4,
∴f(x)=x2-4x+3
(2)∵f(x)=x2-4x+3,
∴f(x)=x2-4x+3的对称轴x=2,
∴f(x)=x2-4x+3在区间[-1,3]上的最大值为f(-1)=8.
点评:本题考查函数的解析式的求法,考查函数的最大值的求法.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四种说法:①命题“?α∈R,sin3α=sin2α”的否定是假命题;②在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=
2
A=
π
6
B=
π
4
;③设二次函数f(x)=x2+ax+a,则“0<a<3-2
2
”是“方程f(x)-x=0的两根x1和x2满足0<x1<x2<1”的充分必要条件.④过点(
1
2
,1)且与函数y=
1
x
的图象相切的直线方程是4x+y-3=0.其中所有正确说法的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存在实数m,使f(m)=-a.
(1)试推断f(x)在区间[0,+∞)上是否为单调函数,并说明你的理由;
(2)设g(x)=f(x)+bx,对于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范围;
(3)求证:f(m+3)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数g(x)的图象在点(m,g(m))的切线方程为y=h(x),若f(x)=g(x)-h(x)
则下面说法正确的有:
 

①存在相异的实数x1,x2使f(x1)=f(x2)成立;
②f(x)在x=m处取得极小值;
③f(x)在x=m处取得极大值;
④不等式|f(x)|<
12013
的解集非空;
⑤直线 x=m一定为函数f(x)图象的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:047

设二次函数(a>0),方程f(x)x=0的两根满足,当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数学公式,二次函数数学公式,关于x的不等式f(x)>(2m-1)x+1-m2的解集为(-∞,m)∪(m+1,+∞),其中m为非零常数,设数学公式
(Ⅰ)求a的值;
(Ⅱ)若存在一条与y轴垂直的直线和函数Γ(x)=g(x)-x+lnx的图象相切,且切点的横坐标x0满足|x0-1|+x0>3,求实数m的取值范围;
(Ⅲ)当实数k取何值时,函数φ(x)=g(x)-kln(x-1)存在极值?并求出相应的极值点.

查看答案和解析>>

同步练习册答案