精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知函数 .
(1)求函数f(x)的定义域、值域;
(2)是否存在实数,使得函数f(x)满足:对于区间(2,+∞)上使函数f(x)有意义的一切x,都有f(x)≥0.
解:(1)由4-ax≥0,得ax≤4.
当a>1时,x≤loga4;  当0<a<1时,x≥loga4.
即当a>1时,f(x)的定义域为(-∞,loga4];当0<a<1时,f(x)的定义域为[loga4,+∞).
令t=,则0≤t<2,且ax=4-t2,?
∴f(x)=4-t2-2t-1=-(t+1)2+4, 当t≥0时,f(x)是t的单调减函数,
∴f(2)<f(x)≤f(0),即-5<f(x)≤3.∴函数f(x)的值域是(-5,3]    .----------6分
(2)若存在实数a使得对于区间(2,+∞)上使函数f(x)有意义的一切x,都有?f(x)≥0,则区间(2,+∞)是定义域的子集.由(1)知,a>1不满足条件;若0<a<1,则loga4<2,且f(x)是x的减函数.
当x>2时,ax<a2.由于0<a2<1,   ∴t=
∴f(x)<0,即f(x)≥0不成立.
综上满足条件的a不存在.                    ------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

,则a, b,c的大小关系是(   )
A.a>c>bB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)=若f(f (1))=1,则a=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知二次函数的图象过点(0,),且的解集为(1,3)。
(1)求的解析式;
(2)求函数的最值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点所在的区间应是                        (   )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则函数的零点个数为(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(1)对于定义在上的函数,满足,求证:函数上是减函数;
(2)请你认真研读(1)中命题并联系以下命题:若是定义在上的可导函数,满足,则上的减函数。然后填空建立一个普遍化的命题
是定义在上的可导函数,,若   +
        上的减函数。
注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合。
(3)证明(2)中建立的普遍化命题。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设定义在R上的函数满足,若,则_______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为_________

查看答案和解析>>

同步练习册答案