分析 观察所给的前四项的结构特点,先观察分子,只有一项组成,并且没有变化,在观察分母,有两部分组成,是一个一次函数,根据一次函数的一次项系数与常数项的变化特点,得到fn(x)=${f}_{n-1}(f(x))=\frac{x}{1+nx}$,从而得到答案.
解答 解:由函数${f}_{1}(x)=\frac{x}{1+x}$观察,
${f}_{2}(x)={f}_{1}({f}_{1}(x))=\frac{x}{1+2x}$,
${f}_{3}(x)={f}_{1}({f}_{2}(x))=\frac{x}{1+3x}$,
…
所给的函数式的分子不变都是x,
而分母是由两部分的和组成,
第一部分的系数分别是x,2x,3x,4x…nx,
第二部分的数1,
∴fn(x)=${f}_{n-1}(f(x))=\frac{x}{1+nx}$.
故答案为:$\frac{x}{1+nx}$.
点评 本题考查归纳推理,实际上本题考查的重点是给出一个数列的前几项写出数列的通项公式,本题是一个综合题目,知识点结合的比较巧妙,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>0 | B. | a≥0 | C. | a>1 | D. | a≥1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Eξ=1 | B. | p(0<ξ<2)=1-2p(ξ≥2) | ||
| C. | 若η=ξ-1,则η~N(0,1) | D. | Dξ=2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com