精英家教网 > 高中数学 > 题目详情
4.已知随机变量ξ服从正态分布,其概率分布密度函数$f(x)=\frac{1}{{\sqrt{2π}}}{e^{-\frac{{{{({x-1})}^2}}}{2}}}$,则下列结论中错误的是(  )
A.Eξ=1B.p(0<ξ<2)=1-2p(ξ≥2)
C.若η=ξ-1,则η~N(0,1)D.Dξ=2

分析 根据正态总体的概率密度函数的意义即可得出X的期望和标准差,再由概率分布的对称特点,即可得到答案.

解答 解:∵正态总体的概率密度函数为$f(x)=\frac{1}{{\sqrt{2π}}}{e^{-\frac{{{{({x-1})}^2}}}{2}}}$(x∈R),
∴总体X的期望μ为1,标准差为1,
故D不正确,
故选:D.

点评 本题考查正态分布的有关知识,同时考查概率分布的对称性及运算能力.正确理解正态总体的概率密度函数的参数的意义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知f1(x)=$\frac{x}{1+x},{f_2}(x)={f_1}({{f_1}(x)}),{f_3}(x)={f_1}({{f_2}(x)})…{f_n}(x)={f_1}({{f_{n-1}}(x)})$(n∈N*,n≥2),运用归纳推理猜想fn(x)=$\frac{x}{1+nx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2
(1)求证:f(x)是奇函数;
(2)试问:在-n≤x≤n时(n∈N+),f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式$\frac{1}{2}$f(bx2)-f(x)>$\frac{1}{2}$f(b2x)-f(b),(b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是(  )
A.(-1,3)B.(-1,-3)C.(-2,-3)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=$\left\{\begin{array}{l}{x+{2}^{x},x≤0}\\{ax-lnx,x>0}\end{array}\right.$,在其定义域上恰有两个零点,则正实数a的值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC是半径为5的圆O的内接三角形,且tanA=$\frac{4}{3}$,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则x+y的最大值为$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的导数:
(1)y=x(1+$\frac{2}{x}$+$\frac{2}{{x}^{2}}$)
(2)y=x4-3x2-5x+6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一副直角三角板(如图1)拼接,将△BCD折起,得到三棱锥A-BCD(如图2).
(1)若E,F分别为AB,BC的中点,求证:EF∥平面ACD;
(2)若平面ABC⊥平面BCD,求证:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算复数$\frac{4+2i}{1-2i}$=2i(i为虚数单位).

查看答案和解析>>

同步练习册答案