精英家教网 > 高中数学 > 题目详情

(本题满分16分)定义在的函数

(1)对任意的都有

(2)当时,,回答下列问题:

  ①判断的奇偶性,并说明理由;

  ②判断的单调性,并说明理由;

  ③若,求的值.

 

【答案】

(1)奇函数 (2)减函数 (3)1

【解析】(1)令y=-x可得f(x)+f(-x)=f(0),再令x=y=0,可得2f(0)=f(0),所以f(0),所以f(x)+f(-x)=0,所以f(x)为奇函数.

(2)设,则,

因为,所以,,又因为x<0时,f(x)>0,所以x>0时,f(x)<0,所以,

所以f(x)在上是减函数.

(3) ,

所以

.

 

练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分16分)A、B是函数f(x)=+的图象上的任意两点,且=(),已知点M的横坐标为.

    (Ⅰ)求证:M点的纵坐标为定值;

    (Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn

    (Ⅲ)已知数列{an}的通项公式为. Tn为其前n项的和,若Tn<(Sn+1+1),对一切正整数都成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海华师大一附中高三第二学期开学检测试题数学 题型:解答题

.(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.

已知椭圆上有一个顶点到两个焦点之间的距离分别为

(1)求椭圆的方程;

(2)如果直线与椭圆相交于,若,证明直线与直线的交点必在一条确定的双曲线上;

(3)过点作直线(与轴不垂直)与椭圆交于两点,与轴交于点,若,证明:为定值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市松江区高三5月模拟考试文科数学 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分

某厂生产某种零件,每个零件的成本为50元,出厂单价定为80元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.04元,但实际出厂单价最低不能低于60元。

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为60元?

(2)设一次订购量为个,零件的实际出厂单价为P元,写出函数P=的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)

 

 

查看答案和解析>>

科目:高中数学 来源:上海交通大学附属中学2012届度高二下学期期末考试数学 题型:解答题

(本题满分16分)第一题满分4分,第二题满分6分,第三题满分6分.

已知动圆过定点P(1,0),且与定直线相切。

(1)求动圆圆心的轨迹M的方程;

(2)设过点P,且倾斜角为的直线与曲线M相交于A,B两点,A,B在直线上的射影是。求梯形的面积;

(3)若点C是(2)中线段上的动点,当△ABC为直角三角形时,求点C的坐标。

 

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(理) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)

为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).

(1)       若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程

(2)       若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;

(3)       对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

 

查看答案和解析>>

同步练习册答案