精英家教网 > 高中数学 > 题目详情
5.函数$f(x)=\sqrt{\frac{2-x}{x+2}}$的定义域为(  )
A.(-2,2)B.[-2,2]C.(-2,2]D.[-2,2)

分析 直接由根式内部的代数式大于等于0,然后求解分式不等式得答案.

解答 解:要使原函数有意义,则$\frac{2-x}{x+2}≥0$,即$\frac{x-2}{x+2}≤0$,解得-2<x≤2.
∴函数$f(x)=\sqrt{\frac{2-x}{x+2}}$的定义域为(-2,2].
故选:C.

点评 本题考查函数的定义域及其求法,考查了分式不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若直线ax-y+2=0与直线3x-y+b=0关于直线y=-x对称,则a=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2asin$\frac{x}{2}cos\frac{x}{2}+si{n}^{2}\frac{x}{2}-co{s}^{2}\frac{x}{2}(a∈R)$.
(1)当a=1时,求函数f(x)的最小正周期及图象的对称中心坐标;
(2)当a=2时,在f(x)=0的条件下,求$\frac{cos2x-co{s}^{2}x}{1+sin2x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\underset{lim}{x→0}$$\frac{x-sinx}{x}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直角三角形ABC的斜边为AB,且A(-1,0),B(3,0),求:
(1)直角顶点C的轨迹方程;
(2)直角边BC的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$2\sqrt{3}×\root{3}{3}×\root{6}{3}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z1=1+i,z2=1-i,若z=$\frac{{z}_{1}}{{z}_{2}}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在同一个平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知U=R,A={x||x-3|<2},B={x|(x-2)(x-4)>0},求
(1)A∩B
(2)CU(A∪B).

查看答案和解析>>

同步练习册答案