精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=($\frac{co{s}^{2}x}{sinx+1}$-1)•(sinx-cosx).
(1)求函数f(x)的定义域;
(2)求函数f(x)的值域.

分析 (1)根据函数f(x)的解析式,分母不为0,列出不等式求出解集即可;
(2)化简函数f(x)的解析式,利用三角函数的有界性,求出f(x)的值域即可.

解答 解:(1)∵函数f(x)=($\frac{co{s}^{2}x}{sinx+1}$-1)•(sinx-cosx),
∴sinx+1≠0,
即sinx≠-1,
解得x≠π+2kπ,k∈Z,
∴函数f(x)的定义域为{x|x≠π+2kπ,k∈Z};
(2)∵函数f(x)=($\frac{co{s}^{2}x}{sinx+1}$-1)•(sinx-cosx)
=($\frac{1{-sin}^{2}x}{sinx+1}$-1)•(sinx-cosx)
=(1-sinx-1)(sinx-cosx)
=-sin2x+sinxcosx
=$\frac{1}{2}$sin2x-$\frac{1-cos2x}{2}$
=$\frac{1}{2}$sin2x+$\frac{1}{2}$cos2x-$\frac{1}{2}$
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)-$\frac{1}{2}$,
且-1≤sin(2x+$\frac{π}{4}$)≤1,
∴-$\frac{\sqrt{2}}{2}$≤$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)≤$\frac{\sqrt{2}}{2}$,
∴-$\frac{\sqrt{2}}{2}$-1≤f(x)≤$\frac{\sqrt{2}}{2}$-1,
∴函数f(x)的值域为[-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$-1].

点评 本题考查了三角函数的图象与性质的应用问题,也考查了求函数的定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知x>1,函数y=$\frac{4}{x-1}$+x的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=\sqrt{x+2}+\frac{2}{3-x}$的定义域为[-2,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各说法:
①方程$\sqrt{3x-2}$+|y+1|=0解集是$\{\frac{2}{3},-1\}$,
②集合{x∈Z|x3=x}用列举法表示为{-1,0,1},
③集合M={y|y=x2+1}与集合P={(x,y)|y=x2+1}表示同一集合
其中说法正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一块边长为10cm的正方形铁片按如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥)形容器.
(1)试把容器的容积V表示为x的函数.
(2)若x=6,
①求图2的主视图的面积;
②求异面直线EB与DC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.平面内有一长度为4的线段AB,动点P满足|PA|+|PB|=6,则点P的轨迹是(  )
A.直线B.射线C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=log2(3-x)的定义域为 A,设全集U=R,则∁UA=[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数$sinhx=\frac{{{e^x}-{e^{-x}}}}{2}$称为“双曲正弦函数”,类似地,函数$coshx=\frac{{{e^x}+{e^{-x}}}}{2}$称为“双曲余弦函数”.
(Ⅰ)判断双曲正弦函数的奇偶性,并证明你的结论;
(Ⅱ)双曲函数的恒等变形多具有与三角函数的恒等变形相似甚至相同的形式,请判断下列等式恒成立的是②.(填写序号)
①sinh2x+cosh2x=1;
②sinh2x=2sinhx•coshy;
③cosh2x=cosh2x-sinh2x.
(Ⅲ)请合理定义“双曲正切函数”y=tanhx,写出用tanhx表示tanh2x的恒等变形式,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合 U={1,2,3,4,5,6},A={1,2,3},B={2,5},则A∩(∁UB)=(  )
A.{1,3 }B.{ 2 }C.{2,3}D.{ 3 }

查看答案和解析>>

同步练习册答案