精英家教网 > 高中数学 > 题目详情
如图,矩形中,,沿对角线折起到的位置,且在平面内的射影落在边上,则二面角的平面角的正弦值为(              )
A.B.
C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在四棱锥中,底面是菱形,平面
分别为的中点,
(I)证明:平面
(II)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的空间几何体中,△ABC,△ACD都是等边三角形,AE=CE,DE//平面ABC,平面ACD⊥平面ABC。
(1)求证:DE⊥平面ACD;
(2)若AB=BE=2,求多面体ABCDE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:
(1)A1D与EF所成角的大小;
(2)A1F与平面B1EB所成角;
(3)二面角C-D1B1-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱柱中,已知侧面
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.
      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱中,,点上且
(Ⅰ)证明:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)

如图,在中,,斜边可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面
(II)当的中点时,求异面直线所成角的大小;
(III)求与平面所成角的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条直线,是两个平面,则下列命题中错误的是            (   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是一个平面,则下列命题正确的是         (   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案