精英家教网 > 高中数学 > 题目详情
4.已知等比数列{an}中,a2=2,则其前三项和S3的取值范围是(  )
A.(-∞,-2]B.(-∞,0)∪(1,+∞)C.[6,+∞)D.(-∞,-2]∪[6,+∞)

分析 由已知得等比数列{an}前三项和S3=$\frac{2}{q}+2+2q$,由此分q>0和q<0两种情况分类讨论,能求出其前三项和S3的取值范围.

解答 解:∵等比数列{an}中,a2=2,
∴其前三项和S3=$\frac{2}{q}+2+2q$,
当q>0时,S3=$\frac{2}{q}+2+2q$≥2+2$\sqrt{\frac{2}{q}×2q}$=6;
当q<0时,S3=$\frac{2}{q}+2+2q$≤2-2$\sqrt{(\frac{2}{-q})(-2q)}$=2-4=-2.
∴其前三项和S3的取值范围是(-∞,-2]∪[6,+∞).
故选:D.

点评 本题考查等比数列的前3项和的取值范围的求法,是基础题,解题时要认真审题,注意等比数列的性质和基本不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.f(x)=$\sqrt{3}$sinx+cosx,(0≤x≤$\frac{π}{2}$),试求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知奇函数f(x)定义域为(-∞,0)∪(0,+∞),f′(x)为其导函数,且满足以下条件①x>0时,f′(x)<$\frac{3f(x)}{x}$;②f(1)=$\frac{1}{2}$;③f(2x)=2f(x),则不等式$\frac{f(x)}{4x}$<2x2的解集为(-$∞,-\frac{1}{4}$)$∪(\frac{1}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:(1)0.2-20+($\frac{1}{27}$${\;}^{-\frac{1}{3}}$);
(2)log3.19.61+lg$\frac{1}{1000}$+ln(e2•$\root{3}{e}$)+log3(log327)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.《张邱建算经》是我国古代数学著作大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月,日织九匹三丈,问日益几何?”该题大意是:“一女子擅长织布,一天比一天织的快,而且每天增加的量都一样,已知第一天织了5尺,一个月后,共织布390尺,问该女子每天增加$\frac{16}{29}$尺.(一月按30天计)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在空间直角坐标系中,若A(0,2,5),B(-1,3,3),则|AB|=(  )
A.$\sqrt{10}$B.3C.$\sqrt{7}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若圆C:(x-5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y-2=0的距离为1,则实数m的值为(  )
A.4B.16C.4或16D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算:${3^{{{log}_3}4}}$-${27^{\frac{2}{3}}}$+lg0.01+(0.75)-1+ln$\frac{1}{e}$=-$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足$\left\{{\begin{array}{l}{x-2y≤0}\\{x+y-5≤0}\\{3x+y-7≥0}\end{array}}\right.$,若u=$\frac{y}{x}$,则u+$\frac{1}{u}$的最大值是$\frac{17}{4}$.

查看答案和解析>>

同步练习册答案