精英家教网 > 高中数学 > 题目详情

【题目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y满足不等式|x|+|y|≤1,则z的取值范围是__________

【答案】[-3,3]

【解析】ab2(xz)3(yz)0 z2x3y由约束条件|x||y|1画出平行域.由图可知z(0,-1)(01)分别取最小值-3和最大值3z[33]

点晴:本题考查的是线性规划问题中最值问题,线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】幂函数f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m可能等于(  )

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数“()型函数”.

(1) 判断函数是否为 “()型函数,并说明理由;

(2) 若函数“()型函数”,求出满足条件的一组实数对

(3)已知函数“()型函数”,对应的实数对(1,4). , ,若当,都有,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.

1)求这一技术难题被攻克的概率;

2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。(本题满分12分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日 期

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分,第(1)问 5分,第(2)问 5 分)

近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的名顾客进行统计,其中岁以下占,采用微信支付的占 岁以上采用微信支付的占

(1)请完成下面列联表:

岁以下

岁以上

合计

使用微信支付

未使用微信支付

合计

(2)并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?

参考公式: .

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD平面CDE,H是BE的中点,G是AE,DF的交点

(1)求证:GH平面CDE;

(2)求证:面ADEF面ABCD

查看答案和解析>>

同步练习册答案