精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数“()型函数”.

(1) 判断函数是否为 “()型函数,并说明理由;

(2) 若函数“()型函数”,求出满足条件的一组实数对

(3)已知函数“()型函数”,对应的实数对(1,4). , ,若当,都有,试求的取值范围.

【答案】(1) 不是“()型函数(2) (3) .

【解析】试题分析:(1)根据()型函数的定义,可以验证不符合要求;(2)函数“()型函数”,等式成立,推导出满足此关系的如都可以;(3)根据()型函数定义,先求出写出函数解析式根据解析式得出值域再根据求出m的取值范围.

试题解析:

(1) 不是“()型函数,因为不存在实数对使得

对定义域中的每一个都成立;

(2) ,,所以存在实数对,

,使得对任意的都成立;

(3) 由题意得, ,所以当, ,其中,, ,其对称轴方程为.

,, 上的值域为,, 的值域为,由题意得,从而

,, 的值域为,, 上的值域为,则由题意,

,解得;当,, 的值域为,,上的值域为,,,

解得

综上所述,所求的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

2为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数,若满足: ,都有成立,则称D上的有界函数,其中M称为函数的上界.

(I)设,证明: 上是有界函数,并写出所有上界的值的集合;

(II)若函数上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列函数的单调区间.

(1)y=|x+1|; (2)y=-x2+ax;

(3)y=|2x-1|; (4)y=-.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:

(1)求恰有1人申请片区房源的概率;

(2)用表示选择片区的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y满足不等式|x|+|y|≤1,则z的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

如图,边长为4的正方形中,点分别是上的点,将折起,使两点重合于.

(1)求证:

(2)当时,

求四棱锥的体积.

查看答案和解析>>

同步练习册答案