精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1.
(1)求函数y=f(x)的周期、最大值和对称中心;
(2)在直角坐标系中画出y=f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

分析 (1)由函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1,可得周期T=$\frac{2π}{2}$.当sin(2x-$\frac{π}{4}$)=1时,解得x,进而得到函数f(x)的最大值.由$sin(2x-\frac{π}{4})$=0,解得x,可得函数f(x)的对称中心.
(2)利用几何画板可得图象.

解答 解:(1)∵函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1,可得周期T=$\frac{2π}{2}$=π.
当sin(2x-$\frac{π}{4}$)=1时,即$2x-\frac{π}{4}$=2kπ+$\frac{π}{2}$,解得x=kπ+$\frac{3π}{8}$(k∈Z),函数f(x)取得最大值$\sqrt{2}$+1.
由$sin(2x-\frac{π}{4})$=0,可得$2x-\frac{π}{4}$=kπ,解得x=$\frac{kπ}{2}$+$\frac{π}{8}$,(k∈Z),可得函数f(x)的对称中心$(\frac{kπ}{2}+\frac{π}{8},0)$.
(2)利用几何画板可得:y=f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

点评 本题考查了三角函数的图象与性质、几何画板的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.命题p:实数x满足$\frac{x+m}{x+3m}$<0,其中m<0;命题q:实数x满足x2-x-6<0或x2+2x-8<0,且¬p是¬q的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,AC为圆O的直径,B为圆周上不与点A、C重合的点,PA垂直于圆O所在的平面,连结PB、PC、AB、BC,作AN⊥PB,AS⊥PC,连结SN,则图中直角三角形个数为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x|x|是(  )
A.偶函数且增函数B.偶函数且减函数C.奇函数且增函数D.奇函数且减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在区间[0,2]上任取两个实数a、b,则函数f(x)=x2+ax-$\frac{1}{4}$b2+1在区间(-1,1)没有零点的概率为(  )
A.$\frac{π}{8}$B.$\frac{4-π}{4}$C.$\frac{4-π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.确定下列各三角函数值的正负号:
(1)sin170°;
(2)cos(-218°)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(p>0),直线l与抛物线C交于A,B两点(不同于原点),以AB为直径的圆过坐标原点O,则关于直线l的判断正确的是(  )
A.过定点(4p,0)B.过定点(2p,0)C.过定点(p,0)D.过抛物线焦点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设抛物线C的方程为x2=2py(p>0),过点M作抛物线C的两条切线MA、MB,切点分别为A、B(A右B左).
(1)若点M的坐标为(1,-1),一个切点B的纵坐标为$\frac{1}{2}$,求抛物线C的方程;
(2)若点M(x0,y0)为直线l:y=-m(m>0)上任意一点,求证:直线AB恒过定点(0,m)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.tanα=$\sqrt{5}$,α∈(π,$\frac{3π}{2}$),则cosα-sinα=$\frac{\sqrt{30}-\sqrt{6}}{6}$.

查看答案和解析>>

同步练习册答案