精英家教网 > 高中数学 > 题目详情
19.求下列函数的值域:
(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$;
(2)y=x+$\frac{1}{x}$+1.

分析 (1)分离常数可得y=-1+$\frac{2}{{x}^{2}+1}$,由x2+1≥1结合不等式的性质可得函数的值域;
(2)当x>0时,由基本不等式可得y=x+$\frac{1}{x}$+1≥3,当x<0时,由基本不等式可得y≤-1,综合可得函数的值域.

解答 解:(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$=$\frac{-({x}^{2}+1)+2}{{x}^{2}+1}$=-1+$\frac{2}{{x}^{2}+1}$,
∵x2+1≥1,∴0<$\frac{2}{{x}^{2}+1}$≤2,∴-1<-1+$\frac{2}{{x}^{2}+1}$≤1,
∴y=$\frac{1-{x}^{2}}{1+{x}^{2}}$的值域为(-1,1];
(2)当x>0时,由基本不等式可得y=x+$\frac{1}{x}$+1≥2$\sqrt{x•\frac{1}{x}}$+1=3,
当且仅当x=$\frac{1}{x}$即x=1时取等号;
当x<0时,由基本不等式可得y=x+$\frac{1}{x}$+1=-(-x+$\frac{1}{-x}$)+1
≤-2$\sqrt{(-x)•\frac{1}{-x}}$+1=-1,当且仅当-x=-$\frac{1}{x}$即x=-1时取等号;
综上可得函数y=x+$\frac{1}{x}$+1的值域为(-∞,-1]∪[3,+∞)

点评 本题考查函数的值域,涉及分类常数法和基本不等式法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.(1)随机变量ξ的分布列如下:
 ξ-1 
 P c
其中a、b、c成等差数列,则P(|ξ|=1)=$\frac{2}{3}$,公差d的取值范围是[-$\frac{1}{3}$,$\frac{1}{3}$].
(2)设离散型随机变量X的分布列为
 X
 P0.2 0.1 0.1 0.3  m
求:①2X+1的分布列;②|X-1|的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.试求下列函数的定义域与值城:
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3);
(2)y=(x-1)2+1;
(3)y=$\frac{5x+4}{x-1}$;
(4)y=x-$\sqrt{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{2x-1,x≥0}\\{x+1,x<0}\end{array}\right.$,则不等式f(x)≤0解集是{x|x≤-1,或0≤x≤$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=f(x)的值域为[-1,1],则y=f(x+1)的值域为[-1,1],;y=f(x2+1)+2的值域为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)求证:f(x)+f($\frac{1}{x}$)是定值;
(3)求f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2012)+f($\frac{1}{2012}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点Pn(xn,yn)是函数y=$\frac{1}{2{x}^{2}}$在第一象限内图象上的点,点Pn(xn,yn)在x轴上的射影为Qn(xn,0).O位坐标原点,点A(3,0),且$\overrightarrow{O{Q}_{n}}$=$\frac{1}{n}$$\overrightarrow{{Q}_{n}A}$(n∈N+).
(1)求{xn}的通项公式;
(2)令bn=$\frac{1}{{x}_{n}{x}_{n+1}}$-$\frac{4n+3}{27}$,求{bn}的前n项和Sn
(3)在(2)的条件下,求证:对一切正整数n≥2,有$\frac{{y}_{2}}{2{S}_{2}}$+$\frac{{y}_{3}}{3{S}_{3}}$+…+$\frac{{y}_{n}}{n{S}_{n}}$<$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}$an
(1)求{an}的通项公式an
(2)Sn为数列{an}的前n项和,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求y=$\frac{3-sinx}{2-cosx}$的值域.

查看答案和解析>>

同步练习册答案