精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,一个焦点为,点在椭圆上.
(1)求动圆圆心的轨迹的方程及椭圆的方程;
(2)若动直线与轨迹处的切线平行,且直线与椭圆交于两点,试求当面积取到最大值时直线的方程.
(1) 轨迹的方程;椭圆方程为 (2)

试题分析:(1)过圆心M作直线的垂线,垂足为H.
由题意得,|MH|=|MF|,由抛物线定义得,点M的轨迹是以为焦点,直线为准线的抛物线,其方程为....................3分
设椭圆方程为,将点A代入方程整理得解得 .故所求的椭圆方程为...............5分
(2)轨迹的方程为,即.
,所以轨迹处的切线斜率为,......7分
设直线方程为,代入椭圆方程得

因为 ,解得;............9分

所以
点A到直线的距离为................12分.
所以
当且仅当,即时等号成立,此时直线的方程为
..................................14分
点评:求轨迹方程的一般方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。本题求轨迹方程用到的是定义法。用定义法求轨迹方程的关键是条件的转化——转化成某一已知曲线的定义条件。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(1)求实数的取值范围;
(2)求圆C 的方程;
(3)问圆C 是否经过某定点(其坐标与无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,,若直线与圆相切,则的取值范
围是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆C:x2+y2+2x+4y-3=0上到直线:x+y+1=0的距离为的点共有(  )
A.1个    B.2个    C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆为圆心且经过原点O.
(1) 若直线与圆交于点,若,求圆的方程;
(2) 在(1)的条件下,已知点的坐标为,设分别是直线和圆上的动点,求的最小值及此时点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是圆内一点,过被圆截得的弦最短的直线方程是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示的图形是(  )
A.以为圆心,为半径的圆
B.以为圆心,为半径的圆
C.以为圆心,为半径的圆
D.以为圆心,为半径的圆

查看答案和解析>>

同步练习册答案