精英家教网 > 高中数学 > 题目详情
f(x)=(n∈Z)是偶函数,且y=f(x)在(0,+∞)上是减函数,则n=( )
A.1
B.2
C.1或2
D.3
【答案】分析:结合幂函数的性质可知,若f(x)=(n∈Z)是偶函数且在(0,+∞)上是减函数,结合n2-3n为整数,可知,n2-3n<0,且n2-3n为偶数,可求
解答:解:∵f(x)=(n∈Z)是偶函数,且n2-3n为整数
∴n2-3n为偶数
又∵y=f(x)在(0,+∞)上是减函数
由幂函数的性质可知,n2-3n<0,即0<n<3
∵n∈Z,则n=1或n=2
当n=1时,n2-3n=-2符合题意;当n=2时,n2-3n=-2,符合题意
故n=1或n=2
故选C
点评:本题主要考查了幂函数的性质的应用,解答本题的关键是熟练掌握幂函数的性质并能灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、幂函数f(x)=xn(n∈Z)具有性质f2(1)+f2(-1)=2[f(1)+f(-1)-1],判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

幂函数f(x)=xn(n∈Z)具有性质f2(1)+f2(-1)=2[f(1)+f(-1)-1],判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

幂函数f(x)=xn(n∈Z)具有性质f2(1)+f2(-1)=2[f(1)+f(-1)-1],判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

同步练习册答案