【题目】古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切制圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径为1,母线长均为
,记过圆锥轴的平面ABCD为平面
(
与两个圆锥面的交线为AC、BD),用平行于
的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线E的一部分,且双曲线E的两条渐近线分别平行于AC、BD,则双曲线E的离心率为( )
![]()
A.
B.
C.
D.2
科目:高中数学 来源: 题型:
【题目】数列
与
满足
,
,
是数列
的前
项和(
).
(1)设数列
是首项和公比都为
的等比数列,且数列
也是等比数列,求
的值;
(2)设
,若
且
对
恒成立,求
的取值范围;
(3)设
,
,
(
,
),若存在整数
,
,且
,使得
成立,求
的所有可能值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合
表示具有下列性质的函数
的集合:①
的定义域为
;②对任意
,都有![]()
(1)若函数
,证明
是奇函数;并当
,
,求
,
的值;
(2)设函数
(a为常数)是奇函数,判断
是否属于
,并说明理由;
(3)在(2)的条件下,若
,讨论函数
的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是( )
![]()
A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐
B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐
C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐
D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为![]()
(1)在曲线
上任取一点
,连接
,在射线
上取一点
,使
,求
点轨迹的极坐标方程;
(2)在曲线
上任取一点
,在曲线
上任取一点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周脾算经》有记载:一年有二十四个节气,每个节气晷(gui)长损益相同,晷是按照日影测定时刻的仪器,晷长即所测定的影子的长度,二十四节气及晷长变化如图所示,相邻两个节气晷长变化量相同,周而复始,若冬至晷长最长是一丈三尺五寸,夏至晷长最短是一尺五寸,(一丈等于10尺,一尺等于10寸),则秋分节气的晷长是( )
A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由郭帆执导吴京主演的电影《流浪地球》于2019年2月5日起在中国内地上映,影片引发了观影热潮,预计《流浪地球》票房收入47亿人民币,超过《红海行动》成为中国影史票房亚军,仅次于《战狼2》.某电影院为了解该影院观看《流浪地球》的观众的年龄构成情况,随机抽取了40名观众,将他们的年龄分成7段:
,
,
,
,
,
,
,得到如图所示的频率分布直方图.
![]()
(1)试求这40名观众年龄的平均数、中位数、众数;
(2)(i)若从样本中年龄在50岁以上的观众中任取3名赠送VIP贵宾观影卡,求这3名观众至少有1人年龄不低于70岁的概率;
(ii)该电影院决定采用抽奖方式来提升观影人数,将《流浪地球》电影票票价提高20元,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金
元、
元,
元.设观众每次中奖的概率均为
,若要使抽奖方案对电影院有利,则
最高可定为多少元?(结果精确到个位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
(
)的离心率等于
,它的一个长轴端点恰好是抛物线
的焦点.
(1)求椭圆
的方程;
(2)若直线
与椭圆
有且只有一个公共点,且直线
与直线
和
分别交于
两点,试探究以线段
为直径的圆是否恒过定点?若恒过定点,求出该定点,若不恒过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com