精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的奇函数,且图象关于点(
32
,0)成中心对称.
(1)证明:y=f(x)为周期函数,并指出其周期;
(2)若f(-1)=-2,求f(1)+f(2)+f(3)+…+f(2011)的值.
分析:(1)f(x)的图象关于点(
3
2
,0)成中心对称,可得到f(x+3)+f(-x)=0,结合f(x)是定义在R上的奇函数,可得f(x+3)=f(x),问题得证;
(2)f(x)为奇函数,由f(-1)=-2,可求得f(1)=2,f(0)=0,结合其周期为3,可求得f(1)+f(2)+f(3)=0,从而利用其和的周期性解决.
解答:证明:(1)∵函数f(x)图象关于点(
3
2
,0)成中心对称,
∴f(x)+f(3-x)=0,
∴f(x+3)+f(-x)=0,
∴f(x+3)=-f(-x),又f(x)为奇函数,
f(-x)=-f(-x),
∴f(x+3)=f(x),
∴y=f(x)为周期函数,其周期T=3.
(2)∵f(-1)=-2,f(x)为奇函数,
∴f(1)=2,又f(0)=0,
∴f(2)=f(2-3)=f(-1)=-2,f(3)=f(0)=0,
f(1)+f(2)+f(3)=0,
f(4)+f(5)+f(6)=0,

∴f(1)+f(2)+f(3)+…+f(2011)
=670[f(1)+f(2)+f(3)]+f(2011)]
=f(2011)=f(670×3+1)=f(1)=2.
点评:本题考查函数的周期性,着重考查函数周期性的证明及应用,求得f(1)+f(2)+f(3)=0,利用和的周期性规律是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案