精英家教网 > 高中数学 > 题目详情

△ABC的三个内角A、B、C成等差数列,分别为三个内角A、B、C所对的边,
求证:。  (13分)

证明:要证,即需证
即证。又需证,需证
∵△ABC三个内角A、B、C成等差数列。∴B=60°。
由余弦定理,有,即
成立,命题得证。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知点A(3,0),B(0,3),C(),
(1)若,求角的值;
(2)若=-1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三、解答题(本大题有5道小题,各小题12分,共60分)
17.在中,分别是角的对边,向量,且 .
(1)求角的大小;
(2)设,且的最小正周期为,求
区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)在△ABC中,角A,B,C的对边分别为,且满足
.
(1)求△ABC的面积.
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?

查看答案和解析>>

同步练习册答案